资源描述:
《非自治的具有阶段结构的时滞捕食被捕食模型的周期解_英文_》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第28卷第1期新疆大学学报(自然科学版)Vol.28,No.12011年2月JournalofXinjiangUniversity(NaturalScienceEdition)Feb.,2011Periodicsolutionforadelayednonautonomousstage-structuredpredator-preymodelLIYing-ke1;2,TengZhi-dong1,MehbubareRehem1(1.CollegeofMathematicsandSystemSciences,XinjiangUniversity,Urumqi,Xin
2、jiang830046,China;2.CollegeofMathematicandPhysics,XinjiangAgriculturalUniversity,Urumqi,Xinjiang830052,China)Abstract:Anonautonomouspredator-preymodelwithstage-structureonpreyandgestationdelayisstudied.Itisassumedthatimmatureandmatureindividualsofthepreyspeciesaredividedbyafixedage,an
3、dthatpredatoronlyattacktheimmatureindividuals.ByusingMawhin’scontinuationtheoremofcoincidencedegreetheory,asucientconditionontheexistenceofpositiveperiodicsolutionsforthemodelisobtained.Anexampleispresentedtoillustratethefeasibilityofourmainresults.Keywords:Nonautonomouspredator-pre
4、ymodel;Stage-structure;Positiveperiodicsolutions;Timedelay;Coincidencedegree.CLCnumber:O175.1DocumentCode:AArticleID:1000-2839(2011)01-0057-08非自治的具有阶段结构的时滞捕食被捕食模型的周期解李盈科1;2,滕志东1,曼合布拜·热合木1(1.新疆大学数学与系统科学学院,新疆乌鲁木齐830046;2.新疆农业大学数理学院,新疆乌鲁木齐830052)摘要:研究了非自治的具有阶段结构的时滞捕食被捕食模型的周期解的存在问题.模型中阶段
5、结构是针对被捕食者种群,而时滞是由于捕食者捕食食饵而转化成自身的一部分的过程引起的.利用Gaines及Mawhin的叠合度理论,文章得到了该模型周期解存在的充分条件.最后给出了一个实例以验证文章结果的可行性.关键词:非自治捕食被捕食模型;阶段结构;正周期解;时滞;叠合度.0Introduction[1]SincethepioneeringandoriginalworkofAielloandFreedmanconsideredthedierencebetweenimmaturepopulationandmaturepopulation,modelswithstag
6、e-structurehadbeenattractedgreatattentionandextensivelyre-searchedinrecentyears(seeforexample[2~12]andthereferencescitedtherein).Theystudiedthestage-structuredmodelwithtimedelay,impulsiveharvestingstrategies,responsefunctions(suchasHollingtype,Beddington-DeAngelis,etc)andobtainedgood
7、resultsonthepermanence,positiveperiodicsolutionandtheglobalstabilityofpositiveequi-libriumfortheinvestigatedmodel.Recently,M.BandyopadhyayandSandipBanerjee[13]studiedthefollowingautonomousstage-structuredmodel:8>>x˙(t)=rx(t) dx(t) x(t) sx2(t) x(t)y(t);>>112111111>>><>>x˙2(t)=x1(t) d2
8、x2(t);(1)>>>