abstract - alces摘要:驼鹿

abstract - alces摘要:驼鹿

ID:34167016

大小:4.56 MB

页数:62页

时间:2019-03-04

上传者:U-5734
abstract - alces摘要:驼鹿_第1页
abstract - alces摘要:驼鹿_第2页
abstract - alces摘要:驼鹿_第3页
abstract - alces摘要:驼鹿_第4页
abstract - alces摘要:驼鹿_第5页
资源描述:

《abstract - alces摘要:驼鹿》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSCUMULATIVEEFFECTSTHRESHOLDSFORARCTICGRAYLINGINTHEWAPITIRIVERWATERSHEDByADAMPAULNORRISB.Sc.,UniversityofAlberta,2004AthesissubmittedinpartialfulfillmentoftherequirementsforthedegreeofMASTEROFSCIENCEinENVIRONMENTANDMANAGEMENTWeacceptthisthesisasconformingtotherequiredstandard..........................................................Dr.MichaelSullivan,ThesisSupervisorProvincialFisheriesScienceSpecialistFishandWildlifeDivisionAlbertaEnvironmentandSustainableResourcesDevelopment..........................................................ThesisCoordinatorSchoolofEnvironmentandSustainability..........................................................Michael-AnneNoble,DirectorSchoolofEnvironmentandSustainabilityROYALROADSUNIVERSITYSeptember2012 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPS©AdamPaulNorris,2012 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSAbstractIntensityandtypesoflandusehavechangedrapidlyinthelastcenturyandinnorth-westernAlbertathishascoincidedwiththedeclineofWapitiRiverwatershedArcticGrayling(Thymallusarcticus)populations.Dataondiurnaldissolvedoxygen(DO),chemicalandphysicalstreamhabitatdatawerecollectedinninesub-watershedsoftheWapitiRiverwithhistoricallyabundantArcticGraylingpopulations.LevelsandfluctuationsofDOandtemperaturewererelatedtothestatusofpopulations;fiveoftheninestreamshadhighertemperaturesandlowerDOduringsummer,anoxicconditionsduringwinterandextirpatedpopulations.Amountofdisturbedlandandroaddensitywithinsub-watershedswereinverselyrelatedtoDOlevelsandpopulationstatus.Cumulativeeffectsmodellingsuggestsapossiblemechanismfortheserelationshipsisincreasedphosphorousrunoff,leadingtoimpairedhabitat.TheserelationshipsandthresholdsmaybeusedasamanagementtooltomaintainorrestoreArcticGraylingandotherstreamfishes. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSAcknowledgementsIwouldliketoacknowledgethesupport,adviceandfacilitationprovidedinallstagesofthisprojectbyCraigJohnson(SeniorFisheriesBiologist,SmokyArea,AlbertaEnvironmentandSustainableResourceDevelopment),withoutwhomitwouldnothavebeenpossible.Similarly,IwouldalsoliketothankJennyBurgess,AdrianMeinkeandMarciaBirkigt(FisheriesBiologists,SmokyAreaAlbertaSustainableResourceDevelopment)andPatrickO’Callaghan(GISTechnologistAlbertaEnvironmentandSustainableResourcesDevelopment)formakingthemselvesavailableandtheirconsistentsupport.MysupervisorDr.MichaelSullivan(ProvincialFisheriesScienceSpecialist,AlbertaEnvironmentandSustainableResourceDevelopment)providedinvaluablehelpindistillingouttheessenceofwhatwasbeingstudied.Hisenthusiasmforresearchandhisabilitytoencouragelearningwereimmenselyappreciatedandallowedmetogleanthemostpossiblefromthisproject. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSTableofContentsAbstractiAcknowledgementsiiTableofContentsiiiListofFiguresvListofTablesviiIntroduction1OverviewofLandUse,DissolvedOxygenandFishManagement1ResearchQuestion6Objectives7MaterialsandMethods8StudyArea8Sub-watershedComparisons10OxygenandTemperatureRelationships13CumulativeEffects16StatisticalAnalysis17Results18Sub-watershedComparisons18OxygenandTemperatureRelationships20 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSCumulativeEffects22Discussion27Sub-watershedComparisons27OxygenandTemperatureRelationships27CumulativeEffects30FutureResearch34ManagementRecommendations36References39AppendixA–Sub-watershedNaturalSubregions46AppendixB–LandUseValues47AppendixC–StatisticalResultsTables50AppendixD–StreamProperties52 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSListofFiguresFigure1.AutomateddataloggingdissolvedoxygenmeasurementsforSteeprockCreektakenatfifteenminuteintervals.Sunriseisindicatedbyayellowlineandsunsetbyablackline.Atypicaldiurnalcyclefordissolvedoxygenlevelsisevidenthere....................................................3Figure2.Mapofstudyareawiththemainrivers,urbancentreandamapofAlberta(inset)forreference.Thestudysub-watershedsareoutlinedincoloursrelatedtograylingpopulationstatus:red=extirpated,yellow=highrisk,green=moderaterisk.Clearedland(agriculturalandforestry)appearsaswhiteshading,withrelativelyundisturbedland(forest)appearingdarker...............................................................................................................................................9Figure3.DatasondedeployedinCalahooCreekonAugust3,2011.Aircraftcableisloopedthroughthedatasondehandle(insidePVCpipe)andthroughholesinthePVCpipe,whichiswrappedinchickenwire.Allofthisisanchoredtorebarthathasbeendrivenintothestreambed....…………………………………………………………………………………..………....10Figure4.WinterfieldsamplingatSteeprockCreekonFebruary12,2012.................................11Figure5.SamplesiteatBeavertailCreekAugust9,2011.Ameasuringropehasbeenstrungacrossthewholewatercourseandmarkers(arrows)havebeenlocatedatthequartileboundariesofthewettedwidth.Depthandvelocityweremeasuredateachofthesethreemarkers.............12Figure6.Meanofwaterdepthsmeasuredatquartilesacrossstudystreams(colouredtoindicateArcticGraylingstatus)duringJulyandAugust2011...................................................................18 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure7.Estimateddischargeofthestudystreams(colouredtoindicateArcticGraylingstatus).SamplingdatesextendedfromlateJulythroughAugust2011.....................................................19Figure8.Summerdissolvedoxygenandtemperaturediurnalregimesofninedifferentstreams(colouredtoindicategraylingstatus)intheWapitiRiverwatershedduringJulyandAugust2011.Ovalsrepresentthemeans(centerpoint)ofdissolvedoxygenandtemperaturewithstandarddeviation(heightandwidthoftheovalsrespectively).Eachovalrepresentsoneweekofdatapoints,takenatfifteenminuteintervals…….…………………………...……………….21Figure9.TheoreticalchangeinphosphorousrunofffortheWapitiRiversub-watersheds.Valuesaretheratiosofcalculatedcurrentrunoffcoefficienttothecalculatedpre-developmentrunoffcoefficient.BarsarecolouredtoindicateArcticGraylingstatus.......................................23Figure10.Summer2011meanwatertemperatureandmeandissolvedoxygenconcentrationplottedagainsttheratioofcurrenttopre-developmentphosphorousrunoffcoefficients.SymbolsarecolouredtoindicateArcticGraylingstatus……………………………..................................24Figure11.Meanwinterdissolvedoxygenconcentrationsversustheratioofcurrent:pre-developmentphosphorousrunoff.Thedashedlineindicatesapotentialthresholdintheincreaseofphosphorusrunoff(above3-fold)beyondwhichwaterbecomesunsuitableasfishhabitat.ColouredsymbolsindicateArcticGraylingstatus....……………………………………………25Figure12.Meansummerdissolvedoxygenconcentrationversusroaddensity,ineachwatershed.ColouredsymbolsindicateArcticGraylingstatus.....................................................26 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSListofTablesTableA1.Thepercentageofdifferentnaturalsubregionsfoundineachoftheninestudysub-watersheds.Thelocationofmeasurement,i.e.,thewatershedmouth,islocatedinthenaturalsubregionwhere”site”islistedinparenthesis..............................................................................46TableB1.RunoffcoefficientsusedtodeveloptheoreticalphosphorousbudgetfortheWapitiRiverwatershed.Alllandusesandlandscapetypesusedarelisted..............................................47TableB2.Increaseinlandusetypesfrompre-developmenttopresentindifferentsub-watershedsoftheWapitiRiver......................................................................................................48TableB3.Roaddensityandtotalroadlengthforeachsub-watershed.........................................49TableC1.MeasuresofCentralTendencyandDispersioncalculatedfortemperatureanddissolvedoxygenvaluescollectedinthesummerof2011............................................................50TableC2.PearsonCorrelationCoefficientsforeachoftheninestreamsanalyzingthestrengthofthecorrelationbetweendissolvedoxygenvaluesandwatertemperatureasmeasuredinthesummerof2011.............................................................................................................................51TableC3.PearsonCorrelationCoefficientsforspecificconductance(mS/cm)anddissolvedoxygen(mg/L)...............................................................................................................................51TableD1.Thephysicalandhydrologicalcharacteristicsoftheninestudysub-watershedsasmeasuredinthesummerof2011...................................................................................................52TableD2.Chemicalpropertiesofthestreamsasmeasuredinsummerof2011..........................5353LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPS 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSIntroductionOverviewofLandUse,DissolvedOxygenandFishManagementLandusehaschangedrapidlyinthelastcenturyinAlbertaanditseffectshaverolledacrossthelandscapeandcascadeddownthroughwatersheds.Inthiswork,“landuseisdefinedastheareaonthelandscapethathasbeenmodifiedbyhumanactivity”(FieraBiologicalConsulting,2012,p.5).ThepredominantchangesthathavetakenplaceontheAlbertanlandscapeinthelastcenturyarethegrowthofagricultureasalanduse,widespreadforestryactivity,andtheheavyfootprintofoilandgasindustries.Otherchangesincludethegrowthofurbandevelopment,acreagesandindustriallandusessuchasgravelmining.Thesechangesinlandusehavereplacedforestedlandwithdevelopedland.Theeffectsofchanginglanduseonstreamecosystems,particularlytheshiftfromforesttoagriculture,havereceivedmuchattentioninrecentyears.Boththelossoffishandareductioninwaterquality-basedhabitatduetochanginglandusearewelldocumented(Bernot,Sobota,Hall,Mulholland,Dodds,Webster,...Arango,2010;Mulholland,Houser,&Maloney,2005;Ragosta,Evensen,Atwill,Walker,Ticktin,Asquith,&Tate,2010;Wang,Hondzo,Xu,Poole,&Spacie,2003).Streamsexperienceamultitudeofeffectswhenthelanduseintheircatchmentismodified.Theripariancorridoractsasbothabarrierandafilter,sothatitsremovalleavesthestreammorevulnerabletooutsideinputs(TheFederalInteragencyStreamRestorationWorkingGroup(FISRWG),2001,p.2-84).Increasednutrientand/ordebrisloading,particularlyviarun-offfromagriculturallands,canfundamentallyalterthetrophicsystemsfoundinstreams(Masamba&Mazvimavi,2008).Landusechangeshavebeenshowntoaffectstreammetabolismregardlessofwhereinthewatershedthesechangestakeplace(Bernotetal.,2010). 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFurthermore,therearenumerouseffectsoflanduseonthehydrologyofawatershed,includingchangingdischargeandalteringthetimingandvolumeofspateflows,thatinturnaltertheflowofstreams(Chambers,Culp,Glozier,Cash,Wrona,&Noton,2006;FISRWG,2001,p.3-18).Helms,Schoonover,&Feminella(2009)reportedthatbothlargerspateflowsandanincreasingproportionofimpervioussurfaceinthewatershedresultsinareductionindissolvedoxygenlevels.Understandingthechangesthatlandusemaycausetoastreaminvolvesunderstandingtheprocessesandchangesthroughoutthewatershedandalsowherewithinthewatershedthosechangesareoccurring.Alargenumberofstudiesincorporatecatchmentscalemetricsanddissolvedoxygentoexaminestreamhealth(seeBernotetal.,2010;Brisbois,Jamieson,Gordon,Stratton,&Madani,2008;Frimpong,Sutton,Engel,&Simon,2005;Peterson,Sheldon,Darnell,Bunn,&Harch,2011).Thecommongoalistofindreliable,readilydeployable,andeasilycommunicatedindicatorsofwaterqualityandstreamhealth.Sánchez,Colmenarejo,Vicente,Rubio,García,Travieso,&Borja(2007)indicatethatoxygendeficitisaquickandsimplewaytodeterminewaterqualitybecauseitiseasilymeasuredandithasalinearrelationshipwiththewaterqualityindex.Dissolvedoxygenhasreceivedattentionasasimplemetricforwaterquality(e.g.,Brisboisetal.,2008;Carrino-Kyker&Swanson,2007)andisverypromisinginthesearchforpracticalandreliablediagnostictoolstoaidinmanagement.Recentworkhasfocusedonincreasinglyexplicitmodelsandmoredetailedspatialanalysisoflanduselocationswithinwatersheds(e.g.,Bernotetal.,2010;Petersonetal.,2011).Mulhollandetal.(2005)pointouttheusefulnessofstreamparametersasanindicatorforthestateofthewatershedinwhichtheyarelocatedduetotheirintegratingnature.Aswater 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSthroughoutthewholewatershedflowstothestream(Hynes,1975),itbringschemicalandphysicalinputfromeverypartofthewatershedtothestreamwhereitisallaggregated.Dissolvedoxygeninstreamsisreadilyunderstoodintermsofitsecologicalprocessesandfunctions.Forinstance,thediurnalcycle(Figure1)asageneralcomponentofaquaticsystemsiswellunderstood(Cox,2003;Ice,2008).Thus,changestolevelsandpatternsindissolvedoxygenconcentrationscaninformusofthestateofthewatershedanditslanduse.Conversely,monitoringlandusemayinformusofpotentialchangestodissolvedoxygeninthewatershedstreams.TherelationshipsthatexistbetweenthewatershedanddissolvedoxygenwithinaFigure1.AutomateddataloggingdissolvedoxygenmeasurementsforSteeprockCreektakenatfifteenminuteintervals.Sunriseisindicatedbyayellowlineandsunsetbyablackline.Atypicaldiurnalcyclefordissolvedoxygenlevelsisevidenthere. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSstreammayallowthedevelopmentofeffectivemanagementandmonitoringtoolsforsustainablelanduseplanning.Theimportanceofdissolvedoxygenforfishandfishpopulationsiswell-documented(seeBreitburg,Adamack,Rose,Kolesar,Decker,Purcell,...CowanJr.,2003;Helmsetal.,2009;Magee,Rens&Lamothe,2005).FISRWG(2001)providesagooddiscussionofthefactorsinfluencingdissolvedoxygen,itsdiurnalcycleanditsinteractionwiththebioticcomponentsofthestreamecosystem(pp.2-33).Adequatedissolvedoxygenlevelsareessentialtofishandotherstreambiotaandtheselevelsarestronglyinfluencedbyflowregime(Garvey,Whiles,&Streicher,2007).Thelethaleffectsofdissolvedoxygendeficitarestarkandobviousasdemonstratedinfishkills,butcanalsoincludesub-lethaleffectsthatlowerhealth,impedereproductivesuccessandcurtailhabitatavailability(Breitburg,2002;FISRWG,2001,pp.2-27&2-70).Quinn,Jacobs,Chen,&Stringfellow(2005)alsopointouttheabilityofhypoxicconditionstoblockfishmigration.Theunderstandingofhowthecumulativeeffectsofhumandevelopmentonthelandscapearelinkedtowaterquality,particularlydissolvedoxygenlevels,isnecessaryforanysuccessfulfishmanagementplan.ArcticGrayling(Thymallusarcticus)andtheirstreamhabitatsareagoodfocusforstudyingthesecumulativeeffectsasextirpationinlargeportionsoftheirhistoricrangereflectstheirsensitivitytochanges(seeBuzby&Deegan,2004;Kaya,1991).ArcticGraylinghavebeenextirpatedinmorethan95%oftheirhistoricrangeinthecontiguousUnitedStates(Mageeetal.,2005;Steed,Zale,Kole,&Kalinowski,2010).TherehasbeenalargedeclineofArcticGraylinginAlberta(AlbertaSustainableResourceDevelopment,2005)andparticularlyinpartsoftheWapitiRiverwatershed(C.Johnson,personalcommunication,March24,2012).The 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSpopulationdeclinesintheWapitiRiverwatershedhavebeenaccompaniedbymarkedhydrologicalchanges(Chambersetal.,2006),includingverylowdissolvedoxygenlevels.Presently,ArcticGraylingarethoughttobeextirpatedinseveralsub-watershedsoftheWapitiRiverwatershedanddeclininginmostalthoughnotallsub-watersheds(McGurk,Froese,Quach,&Seward,2009).Restorationworkinriparianzonesinpartsofthesewatershedsiscurrentlybeingconducted,implicitlyassumingthatriparianhealthisamajorcorrelatetoArcticGraylingstatus(McGurketal.,2009).ArcticGraylingareparticularlysensitivetohabitatquality,especiallywaterqualityandoxygenlevels.TheCanadianCouncilofMinistersoftheEnvironment(CCME)guidelinesforcoldwaterfish(2001)recommend6.5mg/Lofdissolvedoxygenforadultfishand9.0mg/Lforotherlifestages.TheseguidelinesaccuratelyreflecttherequirementsofArcticGraylingandaddtotheirsuitabilityforastudyspeciesbecausetheyprovidegoodrepresentationforthegroupoffishspeciesthatfallunderthecoldwaterfishguidelines,includingotherlocalAlbertaspeciessuchasBullTrout(Salvelinusconfluentus),RainbowTrout(Onchorynchusmykiss),andMountainWhitefish(Prosopiumwilliamsoni).Thegovernmentagency,AlbertaFishandWildlife,hasadirectandactiveroleinmanagingfishinthewatershed,althoughdifferentdepartmentsandlevelsofgovernmentareresponsibleforthevariouspartsofmanagementofwaterandthelandwithinthewatershed.Onepotentialmanagementoptiontorestorelostgraylingpopulationsistoensurethatthehabitatissuitableandthenreintroducegrayling.Apre-requisiteofrestoringandreintroducinggraylingintotheseecosystemsrequiresthatthecausesoftheirdeclineanddisappearanceareknownandcorrected.Theproposedresearchhopestofurtherestablishthehierarchyofknownfactors,detailingdistalandproximalcausesoffishdecline(Garveyetal.,2007). 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSThegoalofthisprojectistocharacterizeandcontrastexistingandlostgraylinghabitatwithrespecttokeyfeaturesofwaterquality-basedaspectsofArcticGraylinghabitatandplacethatinthecontextoflanduse.ArcticGraylingareafishwellsuitedtoexaminingsomeofthesetrendsbecausetheyaresensitive,extirpatedinsomeoftheirhistoricrange,havetemperatureanddissolvedoxygenrequirementsthatalignwellwiththeCCMEguidelinesandhavebeenthefocusofmanagementefforts.TheWapitiRiverwatershedhistoricallyboastedwidespreadArcticGraylingpopulationsthatarenowrestrictedtoparticulartributariesandtheWapitiRiveritself.Superficially,itappearsthatthisdistributionisstratifiedaccordingtolandusesothatanexcellentresearchopportunityisavailable.Unsystematicmeasurementsofdissolvedoxygenconcentrationsalsoseemtoalignwiththelandusepattern.Thisworkwillformalizealltheseobservationsandattempttodefinetheirrelationships.ResearchQuestionThequestionthatIwilladdressthroughtheprocessofthisresearchprojectisonethatincorporatesthreecomponents:landuse,fish-orientedwaterquality(primarilydissolvedoxygen)andArcticGraylingstatus.Thesethreecomponentsarecrucialinthedeterminingdistalcauses,proximalcausesandtheirinteractionsastheybearupontheArcticGraylingintheWapitiRiverwatershed.Hence,myquestionisthefollowing:WhatisthenatureofthedissolvedoxygenandtemperaturecyclesintheWapitiRiverwatershed,whatareitseffectsontheArcticGraylingpopulation(s)andhowdoeslanduseinfluencebothofthesethings?Mynullhypothesisisthatthereisnorelationshipbetweenlanduse,dissolvedoxygenandtheArcticGraylingpopulation(s).Thealternatehypothesisisthatthereisarelationship 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSbetweenlanduse,dissolvedoxygenandtheArcticGraylingpopulation(s).Furthermore,thealternatehypothesisassumesthatthisrelationshipismeasurableanddefinable.Objectives1.Tounderstandthediurnalcyclesofdissolvedoxygenandtemperatureinthesub-watershedsoftheWapitiRiver.2.TounderstandtheroleofdissolvedoxygenlevelsandtemperaturecyclesinaffectingArcticGraylingpopulations.3.Todeterminetherolethatlandusewithinthewatershedhasindeterminingdissolvedoxygencycles.4.Tosynthesizesub-watershed-scalecumulativeeffectsdataandcorrelatethesetoArcticGraylingstatusandwaterqualitystatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSMaterialsandMethodsStudyAreaTheWapitiRiverwatershedstraddlestheborderbetweenAlbertaandBritishColumbiaandhasmanysmalltributaries.Alberta’sseventhlargestcity,GrandePrairie,islocatedatN55°10.187’andW118°48.359’andistheprincipalcityinthewatershed.Thereareseveraltowns,hamletsandsettlementsaswellasnumerousfarmsandacreagesinthewatershed.Thenaturalsubregionsfoundinthestudysub-watershedsareDryMixedwood,CentralMixedwood,LowerFoothills,UpperFoothillsandSubalpine(TableA1).ThisstudywillonlydealwiththeportionofthewatershedthatislocatedinAlberta.TherearesmallpartsofboththeBeavertailandtheSteeprocksub-watershedsthatareexcludedfromthestudyareabecausetheyareinBritishColumbia.Therewereninesub-watersheds(Figure2)thatwerestudied:BearRiver,BeavertailCreek,CalahooCreek,DiamondDickCreek,GundersonCreek,IroquoisCreek,KamisakCreek,PintoCreek,andSteeprockCreek.Theoxygenandtemperaturesamplingsitewithineachsub-watershedwasselectedaccordingtoseveralfactors.First,sitesthatwereconcealedandunlikelytoundergotamperingbythepublicweresought.Second,siteswereselectedthathadnoobviousevidenceofimmediateoradjacentanthropogenicdisturbance,suchasquadtrailsorimmediatelynexttobridges.Third,deeperpoolsorrunswerelocatedtoincreasethechancesofbeingabletofindflowingwaterforthewinterfieldseason. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure2.Mapofstudyareawiththemainrivers,urbancentreandamapofAlberta(inset)forreference.Thestudysub-watershedsareoutlinedincoloursrelatedtograylingpopulationstatus:red=extirpated,green=highrisk,blue=moderaterisk.Clearedland(agriculturalandforestry)appearsaswhiteshading,withrelativelyundisturbedland(forest)appearingdarker. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSSub-watershedComparisonsEachsitewasvisitedtwice;firstduringthesummerof2011(Figure3)andthenagainduringthewinterof2012(Figure4).Eachsitewasdescribedastoitsvegetation,watercoursecharacteristics,andtopography.GPScoordinatesandadescriptionofsiteaccesswerealsorecorded.ASecchidiskwasusedtomeasureturbidity:ItwasloweredintothestreamuntilthebandswerenolongervisibleandthenraiseduntiljustvisibleatwhichpointthedepthofthatFigure3.DatasondedeployedinCalahooCreekonAugust3,2011.Aircraftcableisloopedthroughthedatasondehandle(insidePVCpipe)andthroughholesinthePVCpipe,whichiswrappedinchickenwire.Allofthisisanchoredtorebarthathasbeendrivenintothestreambed. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure4.WinterfieldsamplingatSteeprockCreekonFebruary12,2012. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSsubmersionwasmeasured.DischargewascalculatedbyusingamodifiedversionoftheproceduregivenbyMunson,Axler,Hagley,Host,Merrick,&Richards(2004).Thewettedchannelwidthandtherootedchannelwidthweremeasuredandthewettedwidthwasdividedintoquarters(Figure5).Ateachoneofthethreequarterdivisions,depthwasmeasuredandaverticalpointwithinthewaterFigure5.SamplesiteatBeavertailCreekAugust9,2011.Ameasuringropehasbeenstrungacrossthewholewatercourseandmarkers(arrows)havebeenlocatedatthequartileboundariesofthewettedwidth.Depthandvelocityweremeasuredateachofthesethreemarkers.columnfordischargemeasurementdetermined.Standingdowncurrentoftheestablishedpoint,aGurleymeter(PriceTypeAAmadebyGurleyPrecisionInstruments,Troy,NewYork)wassetto0.6ofthestreamdepthandtherotationsoftheGurleymetercountedforadurationof40 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSseconds.VelocitywasobtainedbyapplyingtheconversionfactorprovidedwiththeGurleymetertothenumberofrotationsmeasuredateachsite.Areawascalculatedbygraphingthewatercourseusingthewettedchannelwidthandthedepthmeasurementsatthequartiles.Thentheareaofeachquartilewassummed,afterwhichdischargewascalculatedas:Q=i=mn(Ai*Vi),(1)where:Qisdischarge,nisthenumberofsubsectionsacrossthestream,Aistheareaofthesubsection,andVisthevelocitymeasuredforthatsubsection.Thismethodprovidesarelativelyquickmeanstoassessdischargeinordertomakeacomparisonbetweenthestudysub-watersheds.OxygenandTemperatureRelationshipsBothoxygenandtemperaturemeasurementstakenbythedatasondeswerecorroboratedbymeasuringtheseparameterswithtwodifferentmethods.Automatedtemperatureloggers(OnsetmodelsH08-001-01,H01-001-01andUA-002-64,CapeCod,Massachusetts)weredeployedbothinthewaterandinashadedterrestriallocationtomeasureairtemperature.Temperatureofboththewaterandtheairwasalsomeasuredatthetimeofdeploymentwithanalcoholthermometer. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSCorroborativemeasuresofdissolvedoxygenweretakenusingatitrationkit(HachmodelOX-2P,Loveland,Colorado)thatmeasuresoxygeninaproceduresimilartotheWinklertitration(Winkler,1888).Oxygenisprecipitatedoutofthewaterbytheadditionofexcessmanganese,iodideandhydroxide,whichyieldsamanganesehydroxideprecipitatethatisthenoxidizedbythedissolvedoxygen.Upontheacidificationofthesolutiontheiodideisconvertedtoiodine.Theiodineisthentitratedbythiosulfateandtheamountofiodinetitratedisproportionaltotheamountofdissolvedoxygenoriginallypresentinthesolution.Themanufacturer’sinstructionswerefollowedforthistitrationprocedurewithoutmodification.Thismeasurementwasdonetoprovidecorroborationofthevaluesobtainedbytheopticaldissolvedoxygenprobeinthedatasonde.AYellowSpringsInstruments(YSI)datasonde600OMSV2(YSI,YellowSprings,Ohio)equippedwithaYSI6155dissolvedoxygenmembraneprobewasdeployedtomakelong-term,repeatedmeasurementsofseveralcharacteristics.Markfort&Hondzo(2009)comparedthemaintypesofdissolvedoxygenprobesavailableandconcludedthattheopticalDOsensor(asusedinthisstudy)isappropriateandreliableforextendeddeployment.Theone-pointcalibrationmethodwasdoneaccordingtothemanufacturer’sinstructions.Threecomponentsthatarecrucialtothedeterminationofdissolvedoxygenarethepartialpressureofoxygen,salinityandtemperature(Ibanez,Hernandez-Esparza,Doria-Serrano,Fregoso-Infante,&Singh,2008;YellowSpringsInstruments,2009,p.16f).Salinityisaccountedforbytheconductivitysensorandismostoftenaminorfactorinthedissolvedoxygenlevelsinfreshwater(Munsonetal.,2004).Temperatureplaysakeyroleinthatitaffectsthesolubilityofoxygeninwater(FISRWG,2001,p.2-32)andthisaccountedforbythereal-time 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSmeasurementofwatertemperaturebythedatasonde.Partialpressureisaffectedbybarometricpressureandbyextensionaltitude(YSI,2009,p.38ff)andisthefactorthatmustbeenteredmanually.Inmostcases,Icalibratedthedatasondesbyenteringthecurrentreadingfromthenearestweatherstationandthishasintroducedapossiblesourceoferrorduetothedistancefromthesiteofcalibration.WhencalibratingopticalDOsensorswithweatherstationbarometricpressure,caremustbetakentoensurethatatruebarometricpressureisusedandnotonecorrectedtosealevel.Insomecases,ahandheldbarometerwasavailableandusedforcalibration;thisistheoptimalmethodofobtainingbarometricpressuretoperformacalibration.Barometricpressureshouldbemeasureddirectlyatthelocationofcalibrationtoensureaccurateandpreciselong-termdeploymentreadings.Aftercalibration,datasondesweredeployedinthecreeks.Thisinvolveddrivingaone-hundredandfiftycentimetrelongsectionofrebarintothecreekbed(Figure4).Chickenwirewaswrappedaroundaseventy-fivecentimetresectionofPVCpipethatwasinturnfastenedtotherebarusinghoseclamps.Thepurposeofthiswastopreventthelossormovementofthedatasondeduetohighstreamflowsordisturbancebybeavers.Additionally,aircraftcablewasloopedthroughthewirehandleonthedatasondewireandthenlockedtoatreeonshoretopreventtheftofthedatasondeoritslossshoulditbecomedislodged.Thedatasondewaslocatedinthewatercolumnsoastokeepthemembranefreeofthemudatthecreekbottomandtoremainsubmergedshouldthewaterlevelsdrop. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSCumulativeEffectsCumulativeeffectsthatmayaffectstreamwaterqualitywithineachsub-watershedwereestimatedbyexaminingGISdata.TheGISdataforeachsub-watershedwereanalyzedtodeterminetheareaofselectednaturallandscapeanddevelopedlandusetypesineachwatershed.Anestimateofthepre-developmentlandscapeareaswasobtainedbyremovingtheareaestimatesforalldevelopedlandscapetypes(e.g.,agricultural,pipelines,roads,gravelpits,etc.)andconvertingthembackintoanaturallandscapetypereflectiveofitslocationinthenaturalsubregion(e.g.,forest,grassland,alpinemeadow,etc.).PhosphorousrunoffcoefficientsforeachlandscapetypewereestimatedfromJeje(2006)andMitchell&Trew(1992).Aweightedaverageofpasturerunoffcoefficientsandintenseagriculturerunoffcoefficients(TableB1)wasusedtocreatealumpedmetricforagriculturallanduse.Thetheoreticalphosphorousbudgetforeachsub-watershedwasthenestimatedfortwodevelopmentscenarios.Onedevelopmentscenariowaspre-development:Howmuchphosphorusmightbeexpectedasrunoffintheentiresub-watershedfromnaturallandscapetypes?Theotherdevelopmentscenariowascurrentdevelopment:Howmuchphosphorusmightbeexpectedasrunofffromthecurrentproportionsofundevelopedanddevelopedlandscapetypes?Theratioofthesetwophosphorusrunoffscenarios(i.e.,current:pre-development)wasusedasanindexofchangeinphosphorusrunoffasaconsequenceofdevelopment.Forexample,aratioofonewouldmeanthatphosphorusrunoffinthewatershedhasnotchangedfromtheexpectednaturallevel.Aratiooftwowouldbeinterpretedasaphosphorusrunoffincreaseof200%,aratioofthreeindicatesanincreaseof300%,andaratiooflessthanonewouldindicateadecreaseinphosphorousrunofffromtheexpectednaturallevels.Thistheoreticalphosphorusbudgetdoesnotaccountforfactorssuchasriparianfiltration,annual 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSchangesinprecipitation,orslopeanddrainagecharacteristicsofthewatershed.Itisintendedtorepresentanindexofchangeinnutrientrunoff,ratherthanapreciseestimateofactualphosphorusincreasesinthestream.RoaddensitywascalculatedusingGISdataandaroadwasdefinedaseveryroadwaygreaterthanfivemetresinwidthanduptodouble-lanehighways.Thisalsoincludedthein-blockroadspresentincutblocks.Smaller,non-roadlinearfeaturessuchastrails,seismiclines,powerlines,andpipelineswerenotincludedinthisestimate.Thedensitycalculatediskilometresofroadpersquarekilometreforeachsub-watershed.StatisticalAnalysisDissolvedoxygenvalueswereplottedagainstotherparameterstoidentifyanytrendsandmeasuresofcentraltendencyanddispersionwerecalculated(Zar,1999).Mean,standarddeviation,range,andcoefficientofvariationwereanalysedforbothdissolvedoxygenandtemperature(TableC1).ThetrendobservedbetweendissolvedoxygenandwatertemperaturewastestedwiththePearsonCorrelationCoefficient.Thistestwasemployedtotestthestrengthofanylinearrelationshipsandthedirectionofthoserelationships.ThePearsonCorrelationCoefficientwasalsousedtoexaminetherelationshipbetweenspecificconductivityanddissolvedoxygen. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSResultsSub-watershedComparisonsThestudycreekswererelativelysimilarinphysicalcharacteristics,allowingforadequatecomparisons.Naturalregionsexhibitedaslighttrendacrossthesub-watershedsbutweresimilar(TableA1),aswerethephysical(TableD1)andchemical(TableD2)streamparameters.StreamFigure6.Meanofwaterdepthsmeasuredatquartilesacrossstudystreams(colouredtoindicateArcticGraylingstatus)duringJulyandAugust2011. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure7.Estimateddischargeofthestudystreams(colouredtoindicateArcticGraylingstatus).SamplingdatesextendedfromlateJulythroughAugust2011.depth(Figure6)andstreamdischarge(Figure7)didvarysomewhatacrosstheninestudystreams,however,theobserveddifferencesdonotappeardirectlycorrelatedtothestatusofArcticGraylingpopulations,nortothehistoricalstatusofallninestreamsoncesupportingabundantArcticGrayling. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSOxygenandTemperatureRelationshipsThedissolvedoxygenregimevariedacrossthesub-watershedsnotonlyinabsolutevaluebutalsointhemagnitudeoffluctuations,anattributewhichreflectsthediurnalcycle.Temperaturefluctuationsgenerallyshowedapatternthatwastheinverseofdissolvedoxygenfluctuations(Figure8)sothatcreekswithlargetemperaturefluctuationsgenerallyhadsmalldissolvedoxygenfluctuationsandviceversa.Temperatureanddissolvedoxygenexhibitastrongnegativecorrelationincreekswithabundantgraylinghabitat(TableC2).Incontrast,creekswherelowerdissolvedoxygenlevelswererecordedandthatwereclassifiedasextirpatedgraylinghabitat,withtheexceptionofKamisakCreek,didnotdemonstratesuchastrongcorrelationbetweenoxygenandtemperature.Forinstance,GundersonCreekasanabundantArcticGraylingstreamhadaPearsonCorrelationCoefficientof-0.9264,andPintoCreekasascarceArcticGraylingcreekhadavalueof-0.814;whereasBeavertailCreekasanextirpatedArcticGraylingstreamhadavalueof0.34359.ThedissolvedoxygenlevelandwatertemperaturehaveastronginversecorrelationinstreamsthatalsohaveArcticGraylingpopulations,whereasthesecorrelationsaremuchweakerinextirpatedArcticGraylingstreams.Duringthewinter,specificconductanceexhibitedanegativecorrelationwithdissolvedoxygen(TableC3),ofwhichIroquoisCreekdemonstratedthestrongestnegativecorrelation(PearsonCorrelationCoefficientof-0.8562).AllwinterPearsonCorrelationCoefficientvalueswerehigherthansummervaluesbothforsamestreamvaluesandacrossallstreams.TheabsolutespecificconductancevaluesinIroquoisCreekwereoftentwiceashighassamecreeksummervaluesandthewintervaluesofothercreeks.TheIroquoisCreekoxygenvalueisthemeanofonlythefirstseveralhoursofmeasurements,assubsequentdissolvedoxygen 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure8.Summerdissolvedoxygenandtemperaturediurnalregimesofninedifferentstreams(colouredtoindicateArcticGraylingstatus)intheWapitiRiverwatershedduringJulyandAugust2011.Ovalsrepresentthemeans(centerpoint)ofdissolvedoxygenandtemperaturewithstandarddeviation(heightandwidthoftheovalsrespectively).Eachovalrepresentsoneweekofdatapoints,takenatfifteenminuteintervals. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSreadingsproducedbythisdatasondewerezero(apparentlycausedbyadatasondemalfunction,inappropriatesensorplacementoranunknownevent).CumulativeEffectsCumulativeeffectswereexaminedbyanalyzingGISdataandsearchingforrelationshipsbetweencumulativeeffectsandwaterquality-basedhabitat.ThetheoreticalphosphorousbudgetwascompiledfromGISdatatoproduceanestimateofchangesinphosphorousrunoff(usingvaluepreviouslypresentedinTableB1).Theninesub-watershedsexperiencedanincreaseinthephosphorousrunoffcoefficientfrompre-development(approximatelypre-1900)tocurrentlevelsrangingfrom2.06(CalahooCreek)to6.23(BearRiver),asshowninFigure9.ThroughGISanalysistheamountofhectaresforeachlandusetypewasdeterminedineachsub-watershed.Theselandusefootprintsonlybeganinthetwentiethcentury,sothatthisvalueisalsotheabsoluteincreasefortherespectivelandusetype(TableC2).Agricultureisthelandusethatdominatesboththeincreaseinthephosphorusrunoffcoefficientandthatcontributesthelargestamountofphosphoroustothetotalrunoff(TableC1andTableC2).Figure10showsthemeansummerdissolvedoxygenandtemperatureplottedagainsttheestimatedincreaseinphosphorousrunoff.Watershedswithlessthana3-foldincreasedonothaveanoxicconditionsinwinter(Figure11).Likewise,forArcticGraylingstatusthereisapotentialthresholdofovera3-foldincreaseinphosphorousrun-offthatseparatesthosecreekswithArcticGraylingpopulationsfromthosewithout(Figure9).Finally,thereisageneraltrendofdecreasingdissolvedoxygenwithanincreasingdensityofroads(TableC3andFigure12). 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure9.TheoreticalchangeinphosphorousrunofffortheWapitiRiversub-watersheds.Valuesaretheratioofcalculatedcurrentrunoffcoefficienttothecalculatedpre-developmentrunoffcoefficient.BarsarecolouredtoindicateArcticGraylingstatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure10.Summer2011meanwatertemperatureandmeandissolvedoxygenconcentrationplottedagainsttheratioofcurrenttopre-developmentphosphorousrunoffcoefficients.SymbolsarecolouredtoindicateArcticGraylingstatuswhereblueisabundant,greenisscarceandredisextirpated. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure11.Meanwinterdissolvedoxygenconcentrationsversustheratioofcurrent:pre-developmentphosphorousrunoff.Thedashedlineindicatesapotentialthresholdintheincreaseofphosphorusrunoff(above3-fold)beyondwhichwaterbecomesunsuitableasfishhabitat.ColouredsymbolsindicateArcticGraylingstatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFigure12.Meansummerdissolvedoxygenconcentrationversusroaddensity,ineachwatershed.ColouredsymbolsindicateArcticGraylingstatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSDiscussionSub-watershedComparisonsThesub-watershedsprovedsimilarenoughtowarrantcomparisonbetweenthem.Themaindifferencesthatwereencounteredwerenotincreeksizeorstructure,variablesthatneededtobecontrolled,butratherinlanduseandwaterquality-basedhabitat,theindependentvariablesthatweretobeexamined.Eventhoughthereisaslighttrendbetweenwaterqualityandnaturalsubregion,streamswiththebestwaterquality-basedhabitatwerenotcorrelatedtoparameterssuchasdischarge,elevationorevensubregion.AlthoughGISinformationforsmallupstreamportions(i.e.,inBritishColumbia)oftheSteeprockCreekandBeavertailCreekwatershedscouldnotbeaccessed,thereisnothingtosuggestthatthesewatershedswiththeinformationavailableforthisstudywereanythingbutadequateforcomparisonbetweenthesub-watersheds.OxygenandTemperatureRelationshipsThedirectionandstrengthofthetrendsbetweendissolvedoxygenandwatertemperatureprovidesagoodindicationofwaterquality-based,coldwaterfishhabitat.HabitatsupportingabundantArcticGraylingwascharacterizedbyastrongrelationshipbetweendissolvedoxygenandtemperature,wheredissolvedoxygendecreaseswhentemperatureincreases.Onefindingofnoteistherelationshipbetweendiurnalfluctuationsofoxygenandtemperature,ratherthanthemoresimplerelationshipsbetweenmeanoxygenandtemperature,whichtotheauthor’sknowledgehasnotbeenreportedelsewhere.Apatternofhighdissolvedoxygenwithlowfluctuationswasobservedingoodgraylinghabitat,whichagreeswithBrisboisetal.(2008),howeveraninterestingtrendoflowtemperatureswithhighfluctuationswasalsoobserved 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSconcomitantly.ArcticGraylingareconsideredtobecold-waterstenothermssensitivetotemperaturefluctuations(Deegan,Golden,Harrison,&Kracko,2005)soitiscounterintuitivethattheyshouldthriveunderthesecircumstances.Potentially,streamsthathavelargertemperaturefluctuationsinconjunctionwithhigh,stablelevelsofdissolvedoxygenprovidehabitatthatfavoursbothadultandyoung-of-the-yearsurvival,somethingwhichisunusualforArcticGrayling(Buzby&Deegan,2004;Northcote,1995).KamisakCreekandSteeprockCreekhadunexpectedlyhighsummerdissolvedoxygenlevelsforcreekswithextirpatedArcticGraylingpopulations.Thisphenomenoncouldbeattributedtothepresenceofmoreintactriparianzonescausinglightlimitationofalgae(Bernotetal.,2010).Moreintactriparianzoneswereanecdotallyobservedatthesecreeks,butnotexplicitlymeasuredinthisstudysoitisnotpossibletosubstantiatethis.Anoxicconditionsinwintercouldcertainlybetheoverwhelmingreasonbehindtheextirpatedstatusofthegrayling,althoughitisalsopossiblethattheseonce-historicalspawningstreamsalsosufferfromfishaccessibilityissuessuchaspassagethroughwatersoflowerquality(Quinnetal.,2005)orthepartialfishbarrierweirontheBeaverlodgeRiver.Duetothehighprecipitationbothinthewinterof2010/2011andthesummerof2011,streamflowswerehighinthesummerof2011andlikelycontributedtohigherthanexpectedoxygenlevelsinsomestreams(Garveyetal.,2007).Specificconductancedidnotplayalargefactorinthedissolvedoxygenlevelsinthestreamsasisexpectedinfreshwaterbodies(Munsonetal.,2004).Inwinter,however,strongcorrelationswereobservedbothrelativetothesummerandinabsoluteterms(Table7).Reducedflowsinwintercouldaccountforaproportionalincreaseintheamountofsolutesinstreamwater.Ofnoteisthatthestrongestcorrelationbetweendissolvedoxygenandspecific 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSconductanceoccurredduringthewinterseasonsamplingofIroquoisCreek.Dissolvedoxygenlevelsinthestreamstartedlow(around4mg/L)andthenbecameanoxic.Potentially,partoftheexplanationliesinthehighspecificconductanceanditshighnegativecorrelationtodissolvedoxygen.Unfortunately,Iamunabletoofferanythingmorethanspeculationastowhatwasthecauseofthehighspecificconductance.Furthertothat,anoversightinthefieldwasthefailuretoredothesamplingforIroquoisCreekinthewinterof2012.MyinitialthoughtuponseeingthedataasIremovedthedatasondewasthatitreflecteddecliningoxygenlevelsmuchlikethoseseenduringlatewinterinlakesandevenstreams(Munsonetal.,2004).Asanalysisproceeded,itbecameapparentthatmyfirstimpressionwasonlyoneofthreepossibilitieswiththeothertwobeing:1)thattheprobeprovidednoaccuratereadingsduringdeploymentand2)thattheprobewasinitiallyperformingwellbutthensomethingintervened.Thefirstoptionisunlikelyastheothermethodsusedtoverifytheaccuracyofthedatasondeprovidedthesamereadings,i.e.,hobotempanddissolvedoxygentitration.Thesecondoptionhasmoremerit,butnophysicalinterference,e.g.,lodgedmudorpositionofdatasondeincreek,wasobservedwhenthedatasondewasretrievedfromthecreek.Furthermore,thedissolvedoxygenprobecalibratedwellandprovidedconsistentreadingsatthenextsitewhereitwasredeployedlateronthesameday.TheseexplanationshavebeenreportedsothatthereadercandiscountthewinterreadingsfromIroquoisCreekiftheyfeelthatisappropriatefortheirpurposes.Therewereonlythreesites(CalahooCreek,GundersonCreek,andPintoCreek),withapossiblefourthsite(IroquoisCreek)thatshowedadissolvedoxygen/temperatureregimecapableofsupportingArcticGrayling.ArcticGraylingareacoldwaterfishrequiring6.5mg/Lof 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSdissolvedoxygenasanadultand9.5mg/Linotherlifestages(CCME,2001).Inthesummerof2011bothBeavertailCreekandDiamondDickCreekexperienceddissolvedoxygenlevelsbelow6.5mg/LandonlyPintoCreek,GundersonCreekandCalahooCreekwereconsistentlyabove9.5mg/L.Mysamplingduringthewinterof2012foundthatonlyCalahooCreek,GundersonCreek,andPintoCreekhadsufficientoxygenforArcticGrayling;IroquoisCreekinitiallyhadsmallamountsofdissolvedoxygenbutmayhavebecomeanoxicoverthecourseofdatasondedeployment,andtheothercreekswereanoxic(Figure9).Onlythreeoftheninesub-watershedslikelyprovidedgoodyear-roundhabitatforalllifestagesofArcticGrayling.MybroadconclusionisthatthereiscurrentlylimitedhabitatforArcticGraylingintheWapitiRiverwatershedwithacceptablewaterquality,asdefinedbythekeyparametersofdissolvedoxygenandtemperature.CumulativeEffectsMyfindingsgenerallyalignwiththebodyofworkthathasbeendoneinexaminingstreamhealthandtheuseofdissolvedoxygentogaugethathealth(Bernotetal.,2010;Brisboisetal.,2008;Cox,2003;Frimpongetal.,2005;Garveyetal.,2007;Petersonetal.,2011;andSanchezetal.,2007).TherelationshipthatwasobservedisreminiscentofthehierarchicalframeworkproposedbyFrissell,William,Warren,&Hurley(1986)andGarveyetal.(2007),inthatlanduseatthecatchmentscaleispreeminentindeterminingin-streamwaterquality.Iwasabletocharacterizepotentialgraylinghabitatwithrespecttodissolvedoxygenandplacethatinthecontextoflanduse.Accordingly,thenullhypothesishasbeenrejectedandthealternatehypothesisthatlanduse,dissolvedoxygenandArcticGraylinghaveameasureableanddefinablerelationshiphasbeenaccepted. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSIfoundtheuseofaverycoarselandusemetrictobequiteeffectiveindescribingtherelationshipbetweenfishstatusandlanduse,whichiscontrarytothecurrenttrendofemployinganever-finerresolution.Petersonetal.(2011)presentaverystrongcasefortheeffectivenessofmoreexplicitlandscapemodelsingaugingstreamhealth.Similarly,otherauthors(e.g.,Wangetal.,2003;andBernotetal.,2010)describetheimportanceofspatialdistributionindeterminingtheimpactsoflanduseuponstreams.Nevertheless,myresultsshowthatlumpedmetricsorcoarseresolutioncanalsobesufficienttoidentifyissuesconcerningwaterqualityorfishpopulationhealth.Indeed,wherepossibleIaveragedseveraldifferentvaluestogetarepresentativecoefficientforeachparticularlandscapeorlandusetypeandconceivablythiswaseffectiveduetothescale.Temporally,largetimescaleswereexaminedinthatIcomparedpre-developmenttocurrentuse.Intermsofspatialscale,riparianzoneshaveagreaterrelativeeffectonwaterqualityandquantitythanotherpartsofthewatershedbutareonlyaverysmallabsoluteportionofthewholewatershed.Thus,examinationatawatershedscalemightbeeffectivebecausetherelativelyhighereffectsattributedtotheriparianzonearedilutedbytheabsolutesizeoftheremainingwatershed.Thetheoreticalphosphorousbudgetwasbuiltusingrunoffcoefficientscitedfromseveraldifferentsources.Althoughmoreexhaustiveexaminationmustbeundertakentoobtainamoredetailedpictureofeachstream,theapproachdetailedhereallowsasnapshotofthestreamwithasimpleassessmentandwhataffectslandusechangesmighthaveoverthelongerterm.MitchellandTrew(1996)notethatAlbertarunoffcoefficientstendtobelowerthanthosereportedforotherareas,therefore,valuesderivedfromstudiesonAlbertalandscapeswereusedwhereverpossible.Eveninthecaseswherevaluesfromotherlocationsneededtobeused,itdoesnotaffectthechangeinlandusecomparisonbecauseitisarelativemeasure.Itdoes, 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPShowever,alterthecomparisonofdifferentlandusetypeswithinthesametemporalunit.Althoughlocationspecificmeasurements,e.g.,arastertypeanalysis(seePetersonetal.,2011),wouldhaveprovidedgreateraccuracy,thismethodprovidedsufficientresolutiontoexaminetrendsonthelandscape.Thisisparticularlythecasebecauseofthemagnitudeofthedifferencebetweenforestandagriculturecoefficients(a7-folddifferenceforphosphorousanda10-folddifferenceforTSS).Agriculturalareahadthegreatestnegativeimpactonwaterquality-basedhabitatinthesewatersheds,farmorethanlineardisturbance,oilandgasleaseareaorcutblocksdid.ThisconcurswiththeresultsofVuorenmaa,Rekolainen,Lepisto,Kenttӓmies,&Kauppila(2002)whonotethatagricultureprovidesthegreatestnon-pointsourceofnutrientrunoffandabout60%ofanthropogenicphosphorousrunoff.Thequalityoffishhabitatisnotonlyafunctionoflocalhabitat,butalsoofsurroundinglanduseandthewatershedaswholebecausetheintegratingnatureofstreamsassimilatesthecumulativeeffectsoflanduseinthewatershedintoitswaters(Mulhollandetal.,2005).Theimportanceofdissolvedoxygenforthesuccessoffishandfishpopulations(e.g.,Helmsetal.,2009)andtheinfluenceoflanduseonfishhabitathasbeenwelldocumented(e.g.,Breitburgetal.,2003;Brisboisetal.,2008,Frimpongetal.,2005;Johnson,McNair,Srivastava,&Hart,2007).Diurnaloxygencyclescanstressfish(Ice,2008)andcombinedwithotherfactorsitcancreateunsuitablehabitat.Reproductivesuccessofsalmonidscanstarttobeimpairedatdissolvedoxygenconcentrationsashighas9mg/L(Munsonetal.,2004).Helmsetal.(2009)notedthatabundanceoflithophilicspawners,suchasArcticGrayling(Nelson&Paetz,1992),increasedwithanincreasingamountofforestedareainawatershedanddecreasedwithincreasingamountofimpervioussurface.Thiswasalsotheobservedtrendinmystudy.Fish 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSpopulationsrespondtothewaterqualityintheirhabitats,whichisafunctionofthecumulativeeffectspresentinthesurroundingwatershed.Theconcurrenceofthetheoreticalphosphorousbudget,landuse,summerdiurnaldissolvedoxygencycles,winterdissolvedoxygenlevelsandgraylingpopulationsallowsforthebroad-scale,integrativeassessmentofmajorchangesinlanduseonfish.Inalloftheseparameters,thereappearstobeathresholdjustabovea3-foldincreaseintherunoffcoefficientwhichdelineatescreeksaccordingtowaterquality-basedhabitat.Followingfurthervalidationandcalibrationtospecificregions,itshouldbepracticaltobuildmodelsthatproducerealisticscenariosbaseduponchangesinlanduse.Thiswouldallowmanagerstostepbackfromproximalfactorsoffishdecline,e.g.,dissolvedoxygen,andstartworkingwithultimatefactors,suchaslanduse,thatdrivetheproximalfactors(Bernotetal.,2010).Theroaddensityineachsub-watershedalignsapproximatelywiththeoveralllanduseandArcticGraylinghabitatclassification.However,thecoarserelationshipsuggeststhatroaddensityisonlyasmallportionofwhatdrivesdissolvedoxygenlevels.Probably,roaddensityisfurthercorrelatedtoamorepowerfuldriverofdissolvedoxygenlevelssuchasphosphorusandsedimentrunoff,ortootheraspectsoffishstatussuchasstreamfragmentationandfishingpressure.Assuch,roaddensityisusefulasagoodindexofcumulativeeffectsinawatershed,butmustnotbeconsideredtobetheproximatedriveroffishstatus.Groupingcreeksbythethreemainparametersmeasuredinthisstudy(i.e.,dissolvedoxygencyclesmeasuredinsummer,thewinteroxygenlevels,andtheoreticalphosphorousbudget)eachprovidedaclassificationsimilartothatoftheArcticGraylingpopulationclassification.Mycategorizationofhabitatbasedontheseparameters,ashavingabundant, 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSscarceorextirpatedgraylingpopulationsworkedwell.GISdata,whichbroadlyindexesaspectsofcumulativeeffects,allowsforthesimpleclassificationofthesestreamsthatmirrorstheclassificationproducedbyusingthedissolvedoxygenregimeorArcticGraylingpopulations.Thisprovidesfisheriesmanagerswithapowerful,simple,andcost-effectivetoolforwatershedplanningandassessment.FutureResearchFutureresearchshouldaddressthemechanisticaspectsbetweencorrelatedfluctuationsindissolvedoxygenandtemperatureandtheireffectsoffishstatus.Thecorrelatedrelationshipsdemonstratedinthisstudyallowsomeofthemore-proximatefactorsaffectingfishpopulationstobeunderstoodinthecontextofultimatefactoroflanduse.WiththeeasyavailabilityofGISdata,landusecategorizationatthescalesusedinmystudyisasimpleandaccessibleassessmenttool.Mostsignificantly,thisshouldallowfortheevaluationofpotentialactionsthatenablessustainablemanagementwhichisproactiveandnotreactiveoverthemid-tolong-term.Scalecontinuestobeanimportantissueformanagers.Biggerscalesprovidegreateroversightandlong-termplanningopportunities,whereassmallerscalesallowforgreaterdetailandthemoreconclusiveestablishmentofcause-effectrelationshipsinvolvedinthesystemsbeingmanaged.Asaforementioned,thepresenttrendistogreaterspatialdetailandmoreexplicitmodelling,bothofwhicharecostlyforregionalfisheriesmanagers.Thepresentworkdepictsthesuitabilityofcoarse-scalemetrics,beingbothrelativelyquickandcost-efficient,fordissolvedoxygenandArcticGraylingintheWapitiwatershed.Furtherworkneedstobedonetoestablishthesuitabilityofthisapproachforotherfishspecies,otherlocationsandotherwater 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSqualityparameters.Iamnotsuggestingthatfinescaletoolshavenouseorplacebutthattheyshouldbereservedforacutecaseswheretheneedisgreatestinordertoconserveresources.Similarly,thoughIwouldmaintainthatthenon-riparianwatershedlanduseismoreimportantthantheriparianzonemostlyduetoitsgreaterabsolutesize:Iwouldnotdenytherelativelygreaterbenefittowaterqualitygainedbymaintainingorre-establishinghealthyriparianzones. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSManagementRecommendationsBeyondtherecommendationsmadeforfurtherresearch,Iwouldliketomakesomerecommendationsforfisheriesandlandusemanagers.Threemainrecommendationsforsustainablemanagementaresuggestedfromthisstudy:1)managingattheappropriatescale,2)extendingmanagementintothepoliticalsphere,and3)recommendationsparticulartotheissueexamined.1.Watershedsaretheappropriatescaleofmanagement,withstreamsoragricultureoranysubunitwithinwatershedscomprisingonlypartoftheissue.Specificproblems,suchaspoint-sourcepollutionorfishkills,mayarisethatarebestdealtwithatafinescalethatallowforappropriateintervention.Beyondremedialaction,amuchbroaderviewandlargerscaleisrequiredtoeffectivelymanagetheecologicalfunctioningofstreamsandtheirwatersheds.Fisheriesmanagersmustengagenoveltacticstomakeprogressonthecumulativeeffectswithinthewatershedsofthewaterbodies(streamsorlakes)thattheytraditionallymanage.Thiscanbechallengingastheyrarelyhaveanydirectauthorityovertheactivitiesthattakeplaceonthelandscapeoutsidethephysicalboundariesofwaterbodies.Managersshouldbeworkingatthewatershedscalewithareductioninscalecommencingwhenlocalandacuteissuesareidentified.2.Becauseofthelargescaleofmanagement(i.e.,thewatershed),therealchallengeformanagersisengagingpolicymakers,thegovernmentandthepublicinsustainablemanagement.Beingabletomodellandusethresholdsthataffectfishpopulationsbringswithit,amongotherthings,theresponsibilityofknowledge.Actionmustbetakenbeforeecologicaldeclinebeginsoratleastbeforesomethreshold,forexample,extirpationofaspeciesisreached,sothatthe 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSresponsibilitythatcomeswithknowledgecanbefulfilled.Thecruxofthisissueishowweasasocietyexistonthelandscape.Eitherweneedtoalterlanduseorexaminewaysofmitigatingthenegativeimpactsoflandusesthatareresponsibleforunwantedoutcomes.Thegreatestchallengefacingfishandfishpopulationsisbeyondtheirrealm,outsidetheconfinesoftheirhabitat.Fishsuccessisdependentuponthepoliticalandsocialworkingsofcultureswithwhichtheysharethelandscape.Fisheriesmanagersneedtogetinvolvedinextensionwork,publicconsultationandinthepoliticalprocessinordertoaddresstheissuesfacingfishthatarebeyondthestreams.3.Bewaryofa3-foldincreaseinphosphorousexport.Allextirpatedcreekshadahigherincreaseinphosphorousbudgetthanthisandtheonlyonescarce-graylingcreek(Iroquois)exceededthislevel.OnacontinuumofstreamswithscarceArcticGrayling,thisstreamwaslikelynearextirpationasissuggestedbythelowoxygeninwinterandthelowersummeroxygenlevels(around9mg/L).ItcouldwellbethattheArcticGraylingpopulationinIroquoisCreekisinthetransitionstagefromscarcetoextirpatedandthattheincreaseinthetheoreticalphosphorousbudgetof3.18isapredictorofashiftthatisoccurring.Managersneedtotakeactionwhentheincreaseinphosphorousrunoffindicatesthatcumulativeeffectsaregoingtotransformonce-healthycreeksintounsuitablehabitatandsopreventsuchecologicallosses.Inthisstudyarea,thereappeartobethreemanagementoptionstoreducethedetrimentaleffectsonwaterqualityandArcticGrayling:1)reducetheamountofagriculturallanduseintheextirpatedsub-watersheds;2)usinggreaterspatialresolutiontoexploretheopportunitytoreducetheimpactofagriculturallandusebyitsrelativelocationswithinthewatershed;and3)research 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSagriculturalpracticesanddevelopacodeofconductthatwillreducethenegativeimpactofagricultureonwaterquality-basedhabitatandArcticGraylingpopulations. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSReferencesAlbertaSustainableResourcesDevelopment.(2005).StatusoftheArcticGrayling(Thymallusarcticus)inAlberta(AlbertaWildlifeStatusReportNo.57).Edmonton,Alberta:AlbertaSustainableResourceDevelopment,FishandWildlifeDivision,andAlbertaConservationAssociation.Retrievedfromhttp://www.srd.alberta.ca/FishWildlife/SpeciesAtRisk/DetailedStatus/documents/Arctic_Grayling.pdfBernot,M.J.,Sobota,D.J.,Hall,R.O.,Mulholland,P.J.,Dodds,W.K.,Webster,J.R.,...Arango,C.(2010).Inter-regionalcomparisonofland-useeffectsonstreammetabolism.FreshwaterBiology,55(9),1874-1890.doi:10.1111/j.1365-2427.2010.02422.xBreitburg,D.L.(2002).Effectsofhypoxiaandthebalancebetweenhypoxiaandenrichmentoncoastalfishesandfisheries.Estuaries25,767-781.Retrievedfromhttp://www.jstor.org.ezproxy.royalroads.ca/stable/1353031Breitburg,D.L.,Adamack,A.,Rose,K.A.,Kolesar,S.E.,Decker,M.B.,Purcell,J.E.,…CowanJr.,J.H.(2003).ThepatternandinfluenceoflowdissolvedoxygeninthePatuxentRiver,aseasonallyhypoxicestuary.Estuaries,26(2),280-297.Retrievedfromhttp://www.jstor.org/stable/1353125Brisbois,M.C.,Jamieson,R.Gordon,R.,Stratton,G.,&Madani,A.(2008).Streamecosystemhealthinruralmixedland-usewatersheds.JournalofEnvironmentalEngineeringandScience,7(5),439-452.doi:10.1139/S08-016 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSBuzby,K.M.,&Deegan,L.A.(2004).Long-termsurvivalofadultArcticgrayling(Thymallusarcticus)intheKuparukRiver,Alaska.CanadianJournalofFisheriesandAquaticScience,61,1954–1964.doi:10.1139/F04-126CanadianCouncilofMinistersoftheEnvironment.(2001).Canadianwaterqualityguidelinesfortheprotectionofaquaticlife:CCMEWaterQualityIndex1.0.Retrievedfromhttp://st-ts.ccme.ca/Chambers,P.A.,Culp,J.M.,Glozier,N.E.,Cash,K.J.,Wrona,F.J.,&Noton,L.(2006).NorthernRiversEcosystemInitiative:Nutrientsanddissolvedoxygen–issuesandimpacts.EnvironmentalMonitoringandAssessment,113,117–141.doi:10.1007/s10661-005-9099-zCarrino-Kyker,S.,&Swanson,A.K.(2007).SeasonalphysicochemicalcharacteristicsofthirtynorthernOhiotemporarypoolsalonggradientsofGIS-delineatedhumanland-use.Wetlands,27(3),749-760.doi:10.1128/AEM.01482-07Cox,B.A.(2003).Areviewofdissolvedoxygenmodellingtechniquesforlowlandrivers.ScienceoftheTotalEnvironment,314-316,303-334.doi:10.1016/S0048-9697(03)00062-7Deegan,L.A.,Golden,H.E.,Harrison,J.,&Kracko,K.(2005).Swimmingperformanceandmetabolismof0+yearThymallusarcticus.JournalofFishBiology,67(4),910-918.doi:10.1111/j.0022-1112.2005.00784.x 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSFederalInteragencyStreamRestorationWorkingGroup.(2001).Streamcorridorrestoration:Principles,processesandpractices(GPOItemNO.0120=A;SuDocsNo.A57.6/2:EN3PT.653).Retrievedfromwww.usda.gov/stream_restorationFieraBiologicalConsulting.(2012).Athabascastateofthewatershedreport:Phase2(FieraBiologicalConsultingReport#1142.)Edmonton,Alberta:FieraBiologicalConsulting.Retrievedfromhttp://www.awc-wpac.ca/pdf/AWC_WatershedReport_April23_ToAWC_web.pdfFrimpong,E.A.,Sutton,T.M.,Engel,B.A.,&Simon,T.P.(2005).Spatial-scaleeffectsonrelativeimportanceofphysicalhabitatpredictorsofstreamhealth.EnvironmentalManagement,36(6),899-917.doi:10.1007/s00267-004-0357-6Frissell,C.A.,William,J.L.,Warren,C.E.,&Hurley,M.D.(1986).Ahierarchicalframeworkforstreamhabitatclassification:Viewingstreamsinawatershedcontext.EnvironmentalManagement,10(2),199-214.doi:10.1007/BF01867358Garvey,J.E.,Whiles,M.R.,&Streicher,D.(2007).Ahierarchicalmodelforoxygendynamicsinstreams.CanadianJournalofFisheriesandAquaticScience,64,1816–1827.doi:10.1139/F07-144HachCompany.(2009).DR/890colorimeterproceduresmanual(4870-22).Loveland,Colorado.Helms,B.S.,Schoonover,J.E.,&Feminella,J.W.(2009).Assessinginfluencesofhydrology,physicochemistry,andhabitatonstreamfishassemblagesacrossachanginglandscape. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSJournaloftheAmericanWaterResourcesAssociation,45(1),157-169.doi:10.1111/j.1752-1688.2008.00267.xHynes,H.B.N.(1975).Thestreamanditsvalley.VerhandlungenderInternationalenVereinigungfürTheoretischeundAngewandteLimnologie,19,1–15.Retrievedfromhttp://www.esf.edu/efb/limburg/watershedecology/readings/hynes_1975.pdfIbanez,J.G.,Hernandez-Esparza,M.,Doria-Serrano,C.,Fregoso-Infante,A.,&Singh,M.M.(2008).EnvironmentalChemistry.doi:10.1007/978-0-387-49493-7_2Ice,G.(2008).Streamtemperatureanddissolvedoxygen.In:J.D.Stednick,(Ed.),Hydrologicalandbiologicalresponsestoforestpractices(pp.37-54).NewYork,NewYork:Springer.Jeje,Y.(2006).SouthernAlbertaLandscapes:MeetingtheChallengesAhead-Exportcoefficientsfortotalphosphorus,totalnitrogenandtotalsuspendedsolidsinthesouthernAlbertaregion:Areviewofliterature(PublicationNo.T-863).Edmonton,Alberta;AlbertaEnvironment.Johnson,T.E.,McNair,J.N.,Srivastava,P.,&Hart,D.D.(2007).Streamecosystemresponsestospatiallyvariablelandcover:Anempiricallybasedmodelfordevelopingriparianrestorationstrategies.FreshwaterBiology,52,680-695.doi:10.1111/j.1365-2427.2007.01726.xKaya,C.M.(1991).RheotacticdifferentiationbetweenfluvialandlacustrinepopulationsofArcticgrayling(Thymallusarcticus),andimplicationsfortheonlyremainingindigenous 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSpopulationoffluvial“MontanaGrayling”.CanadianJournalofFisheriesandAquaticScience,48,53–59.doi:10.1139/f91-008Magee,J.,Rens,E.,&Lamothe,P.(2005).FluvialArcticGraylingmonitoringreport2005:BigHoleRiverandreintroductionefforts.Dillon,Montana:MontanaDepartmentofFish,WildlifeandParks.Retrievedfromhttp://fwp.mt.gov/fwpDoc.html?id=17123Markfort,C.D.,&Hondzo,M.(2009).Dissolvedoxygenmeasurementsinaquaticenvironments:Theeffectsofchangingtemperatureandpressureonthreesensortechnologies.JournalofEnvironmentalQuality,38,1766–1774.doi:10.2134/jeq2008.0197Masamba,W.R.L.,&Mazvimavi,D.(2008).ImpactonwaterqualityoflandusesalongThamalakane-BotetiRiver:AnoutletoftheOkavangodelta.Physics&ChemistryoftheEarth-PartsA/B/C,33(8-13),687-694.doi:10.1016/j.pce.2008.06.035McGurk,M.,Froese,M.,Quach,M.,&Seward,M.(2009).Redwillowwatershed:Anoverviewofthehistoryandpresentstatusoffishpopulationsandfishhabitatandrecommendationsforrestoration.(ProjectNo.110991).Burnaby,BritishColumbia:AECOMCanadaLtd.Mitchell,P.,&Trew,D.(1992).Agriculturalrunoffandlakewaterquality.Edmonton,Alberta;AlbertaEnvironmentalProtection.Mulholland,P.J.,Houser,J.N.,&Maloney.K.O.(2005).Streamdiurnaldissolvedoxygenprofilesasindicatorsofin-streammetabolismanddisturbanceeffects:FortBenningasacasestudy.EcologicalIndicators,5(3),243-252.doi:10.1016/j.ecolind.2005.03.004 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSMunson,B.H.,Axler,R.,HagleyC.,HostG.,MerrickG.,&RichardsC.(2004).WaterontheWeb-MonitoringMinnesotaLakesontheInternetandTrainingWaterScienceTechniciansfortheFuture-ANationalOn-lineCurriculumusingAdvancedTechnologiesandReal-TimeData.Duluth,Minnesota:UniversityofMinnesota-Duluth.Retrievedfromhttp://WaterOntheWeb.org/under/waterquality/oxygen.htmlNelson,J.S.,&Paetz,M.J.(1992).ThefishesofAlberta.Edmonton,Alberta:TheUniversityofAlbertaPress.Northcote,N.G.(1995).ComparativebiologyandmanagementofArcticandEuropeanGrayling(Salmonidae,Thymallus).ReviewsinFishBiologyandFisheries,5,141-194.doi:10.1007/BF00179755Peterson,E.E.,Sheldon,F.,Darnell,R.,Bunn,S.E.,&Harch,B.D.(2011).Acomparisonofspatiallyexplicitlandscaperepresentationmethodsandtheirrelationshiptostreamcondition.FreshwaterBiology,56(3),590-610.doi:10.1111/j.1365-2427.2010.02507.xQuinn,N.,Jacobs,K.,Chen,C.,&Stringfellow,W.(2005).Elementsofadecisionsupportsystemforreal-timemanagementofdissolvedoxygenintheSanJoaquinRiverdeepwatershipchannel.EnvironmentalModellingandSoftware,20,1495-1504.doi:10.1016/j.envsoft.2004.08.014Ragosta,G.,Evensen,C.,Atwill,E.,Walker,M.,Ticktin,T.,Asquith,A.,&Tate,K.(2010).Causalconnectionsbetweenwaterqualityandlanduseinaruraltropicalislandwatershed.EcoHealth,7(1),105-113.doi:10.1007/s10393-010-0299-9 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSSánchez,E.,Colmenarejo,M.F.,Vicente,J.,Rubio,A.,García,M.G.,Travieso,L.,&Borja,R.(2007).Useofthewaterqualityindexanddissolvedoxygendeficitassimpleindicatorsofwatershedspollution.EcologicalIndicators,7(2),315-328.doi:10.1016/j.ecolind.2006.02.005Steed,A.C.,Zale,A.V.,Koel,T.M.,&Kalinowski,S.T.(2010).PopulationviabilityofArcticGraylingintheGibbonRiver,YellowstoneNationalPark.NorthAmericanJournalofFisheriesManagement,30,1582–1590.doi:10.1577/m10-083.1Vuorenmaa,J.,Rekolainen,S.,Lepisto,A.,KenttӓmiesK.,&Kauppila,P.(2002).LossesofnitrogenandphosphorusfromagriculturalandforestareasinFinlandduringthe1980sand1990s.EnvironmentalMonitoringandAssessment,76,213-248.doi:10.1023/A:1015584014417Wang,H.,Hondzo,M.,Xu,C.,Poole,V.,&Spacie,A.(2003).Dissolvedoxygendynamicsofstreamsdraininganurbanizedandanagriculturalcatchment.EcologicalModelling,160(1),145-161.doi:10.1016/S0304-3800(02)00324-1Winkler,L.(1888).DieBestimmungdesinWasserGelöstenSauerstoffes.BerichtederDeutschenChemischenGesellschaft,21(2),2843–2855.doi:10.1002/cber.188802102122.YellowSpringsInstruments.(2009,September).TheDissolvedOxygenHandbook.(Catalogueno.:W390909).YellowSprings,Ohio:YellowSpringsInstruments.Zar,J.H.(1999).BiostatisticalAnalysis.Toronto:Prentice-HallCanada. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSAppendixA–Sub-watershedNaturalSubregionsTableA1.Thepercentageofdifferentnaturalsubregionsfoundineachoftheninestudysub-watersheds.Thelocationofmeasurement,i.e.,thewatershedmouth,islocatedinthenaturalsubregionwhere”site”islistedinparenthesis.NaturalSubregionGundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailRiverDiamondDickCreekKamisakCreekSteeprockCreekDryMixedwood53.5%(site)8.6%(site)22.0%(site)24.3%(site)CentralMixedwood11.3%(site)78.2%(site)18.2%(site)26.8%91.4%51.8%75.7%100.0%(site)LowerFoothills0.4%(site)88.7%21.8%70.5%19.7%26.2%UpperFoothills83.6%11.3%Subalpine15.9%Note:BluerepresentsabundantArcticGrayling,greenrepresentsscarceArcticGraylingandredrepresentsextirpatedArcticGraylingstatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSAppendixB–LandUseValuesTableB1.RunoffcoefficientsusedtodeveloptheoreticalphosphorousbudgetfortheWapitiRiverwatershed.Alllandusesandlandscapetypesusedarelisted.LandscapeTypesTotalPhosphorous(kg/ha/yr)TotalSuspendedSolids(kg/ha/yr)Forest0.1112502Lentic(includeswetlands)0303Lotic0303FootprinttypesAgriculture0.77341484.513Feedlots250610006Roads(includesin-blockroads)3.5720008Wellsites7.9598699Cutblocks(<30yearsold)0.391025011Pipelines0.391025011Seismiclines0.391025011Powerlines0.391025011Gravelpits1.5128699Notes:1–AverageofvaluesgivenforAlbertalocationsinMitchell&Trew,1992.2–UnitedStatesEnvironmentalProtectionAgency(USEPA)(1976)medianvaluesforforestrunofffoundinJeje(2006).3-Assumedanyexportfromaquaticsystemsisconstantandoflittlesignificanceforthewatershedbudget4-Averageof30agriculturevaluesfoundinJeje(2006).5-Averageof5AlbertaintensiveagriculturevaluesinJeje(2006).6-USEPA(1976)valueforfeedlotsfoundinJeje(2006).7-Loggingroad,publichighwayandprivateroadvaluefromtheMaineDepartmentofEnvironmentalProtection(2000)foundinJeje(2006). 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPS8-USEPA(1976)valueforurbanlandusefoundinJeje(2006).9-IndustriallandusevaluefromReckhowetal.(1980)foundinJeje(2006).10-AveragevaluefromSt.Ongeetal.(1990)foundinJeje(2006).11-ForestlandusevaluefromUSEPA(1976)foundinJeje(2006).12-StripminelandusevaluefromTheCadmusGroup(1998)foundinJeje(2006).13-Averageofvaluesfoundin(Jeje,2006)withintensiveandnon-intensiveagriculturereceivingaweightingequaltoregionalagriculturelanduse..TableB2.Increaseinlandusetypesfrompre-developmenttopresentindifferentsub-watershedsoftheWapitiRiver.Landusetype(ha)GundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailCreekDiamondDickCreekKamisakCreekSteeprockCreekNorthernAlbertaAgriculture0.00.0848.10.031935.02792.64487.51842.53084.7Feedlots0.00.00.00.00.00.00.00.00.0Roads(includesin-blockroads)153.793.1187.1872.92031.9433.2335.4163.6218.4WellSites36.223.287.6507.5244.3193.545.258.645.0Cutblocks874.41523.475.34756.1763.60.0322.50.00.0Pipelines87.1112.1155.0680.7419.5292.684.555.961.9Seismic42.559.850.9249.5424.2243.4138.8173.6162.3Powerlines0.00.00.00.013.70.00.026.00.0GravelPits0.00.00.00.00.00.00.014.01.5Note:Numberspresentedarethehectaresofeachlandusetypebysub-watershed.Valuesareforthepresentandsimultaneouslyrepresenttheincreasefrompre-developmentbecausetheselandusetypeswerenotonthelandscapeatthattime.BluerepresentsabundantArcticGrayling,greenrepresentsArcticGraylingandredrepresentsextirpatedArcticGrayling. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSTableB3.Roaddensityandtotalroadlengthforeachsub-watershed.RoadsGundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailCreekDiamondDickCreekKamisakCreekSteeprockCreekLinealkm/km20.630.480.820.751.350.870.890.660.67Totalminwatershed5654540605670043274667333131550561203485782876930Note:BluerepresentsabundantArcticGrayling,greenrepresentsArcticGraylingandredrepresentsextirpatedArcticGraylingstatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSAppendixC–StatisticalResultsTablesTableC1.MeasuresofCentralTendencyandDispersioncalculatedfortemperatureanddissolvedoxygenvaluescollectedinthesummerof2011.GundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailCreekDiamondDickCreekKamisakCreekSteeprockCreekTemperature(°C)Mean10.0713.517.3715.5716.1317.3717.4712.8115.26StandardDeviation1.491.41.231.11.230.921.310.991.46Range6.16.536.284.584.954.215.734.695.86CoefficientofVariation(%)14.8010.377.087.067.635.307.507.739.57DissolvedOxygen(mg/L)Mean10.810.549.039.938.26.436.919.339.56StandardDeviation0.310.260.260.190.570.560.580.330.43Range1.291.151.860.723.092.282.771.281.72CoefficientofVariation(%)2.872.472.881.916.958.718.393.544.50Note:BluerepresentsabundantArcticGrayling,greenrepresentsArcticGraylingandredrepresentsextirpatedArcticGraylingstatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSTableC2.PearsonCorrelationCoefficientsforeachoftheninestreamsanalyzingthestrengthofthecorrelationbetweendissolvedoxygenvaluesandwatertemperatureasmeasuredinthesummerof2011.GundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailcreekDiamondDickCreekKamisakCreekSteeprockCreek-.9264-.8661-.6002-.8143-.4381.3436.3976-.8107-.1202Note:Anegativevalueindicatesthatasoneparameterincreasestheotherparameterdecreasesandpositiveindicatesthatbothvaluesincreaseordecreasetogether.Blue,greenandredindicateabundant,scarce,andextirpatedArcticGraylingpopulationsrespectively.TableC3.PearsonCorrelationCoefficientsforspecificconductance(mS/cm)anddissolvedoxygen(mg/L). GundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailCreekDiamondDickCreekKamisakCreekSteeprockCreekSummer-.3228.0008-.0388-.3326-.0549.404-.2565-.1866-.3692Winter-.3914-.5642-.8593-.6874     Note:Barsarecolouredtoindicategraylingstatus;bluerepresentsabundantArcticGrayling,greenrepresentsscarceandredrepresentsextirpated.Valuesaregivenforbothsummerandwinterwhereapplicable.The5creekswithoutaspecificconductancevaluewereanoxicandnodatasondedeployment. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSAppendixD–StreamPropertiesTableD1.Thephysicalandhydrologicalcharacteristicsoftheninestudysub-watershedsasmeasuredinthesummerof2011. GundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailCreekDiamondDickCreekKamisakCreekSteeprockCreekCrosssectionArea(m2)4.321.591.2410.555.858.650.730.201.73Discharge(m3/s)1.910.200.421.503.540.330.020.050.21MeanDepth(m)0.710.530.260.710.941.260.280.180.51DeepestMeasurement(m)0.840.650.420.711.031.350.350.190.81WettedChannelWidth(m)7.903.745.324.287.247.973.311.3417.60StreamOrder533546335Turbidity(cm)86bottom59bottom39almostbottom37357834bottom30almostbottom62almostbottomHoursofFullSunlight/Day9.811.611.89.69.77.38.07.57.6Elevation(m)1000741750711787829833708714Note:BluerepresentsabundantArcticGrayling,greenrepresentsArcticGraylingandredrepresentsextirpatedArcticGraylingstatus. 53LANDUSE,DISSOLVEDOXYGEN,ANDARCTICGRAYLINGRELATIONSHIPSTableD2.Chemicalpropertiesofthestreamsasmeasuredinsummerof2011.VariableGundersonCreekCalahooCreekIroquoisCreekPintoCreekBearRiverBeavertailCreekDiamondDickCreekKamisakCreekSteeprockCreekNO30.60.11.10.42.20.80.110.1NH3101020100PO402.58.27.48.71.54.79.63.4pH667766766Note:BluerepresentsabundantArcticGrayling,greenrepresentsArcticGraylingandredrepresentsextirpatedArcticGraylingstatus.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭