欢迎来到天天文库
浏览记录
ID:33918665
大小:473.00 KB
页数:7页
时间:2019-03-02
《高一数学同步练习对数与对数函数.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com高一数学同步测试—对数与对数函数一、选择题:1.的值是()A.B.1C.D.22.若log2=0,则x、y、z的大小关系是()A.z<x<yB.x<y<zC.y<z<xD.z<y<x3.已知x=+1,则log4(x3-x-6)等于()A.B.C.0D.4.已知lg2=a,lg3=b,则等于()A.B.C.D.5.已知2lg(x-2y)=lgx+lgy,则的值为()A.1B.4C.1或4D.4或6.函数y=的定义域为()A.(,+∞)
2、B.[1,+∞C.(,1D.(-∞,1)学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com7.已知函数y=log(ax2+2x+1)的值域为R,则实数a的取值范围是()A.a>1B.0≤a<1C.0<a<1D.0≤a≤18.已知f(ex)=x,则f(5)等于()A.e5B.5eC.ln5D.log5eOxyOxyOxyOxy9.若的图像是()ABCD10.若在区间上是增函数,则的取值范围是()A.B.C.D.1
3、1.设集合等于()A.B.C.D.12.函数的反函数为()A.B.C.D.二、填空题:13.计算:log2.56.25+lg+ln+=.学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com14.函数y=log4(x-1)2(x<1=的反函数为__________.15.已知m>1,试比较(lgm)0.9与(lgm)0.8的大小.16.函数y=(logx)2-logx2+5在2≤x≤4时的值域为______.三、解
4、答题:17.已知y=loga(2-ax)在区间{0,1}上是x的减函数,求a的取值范围.18.已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.19.已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?20.设0<x<1,a>0且a≠1,试比较
5、loga(1-x)
6、与
7、loga(1+x)
8、的大小.学而思教育·学习改变命运思考成就未来!高考网www.gaokao.co
9、m学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com21.已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.22.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.参考答案一、选择题:ADBCBCDCBAAB二、填空题:13.,14.y=1-2x(x∈R),15.(lgm)0.9≤(lgm)0.8,1
10、6.三、解答题:17.解析:先求函数定义域:由2-ax>0,得ax<2学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com学而思教育·学习改变命运思考成就未来!高考网www.gaokao.com又a是对数的底数,∴a>0且a≠1,∴x<由递减区间[0,1]应在定义域内可得>1,∴a<2又2-ax在x∈[0,1]是减函数∴y=loga(2-ax)在区间[0,1]也是减函数,由复合函数单调性可知:a>1∴1<a<218、解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.
11、当a2-1≠0时,其充要条件是:解得a<-1或a>又a=-1,f(x)=0满足题意,a=1,不合题意.所以a的取值范围是:(-∞,-1]∪(,+∞)19、解析:由f(-1)=-2,得:f(-1)=1-(lga+2)+lgb=-2,解之lga-lgb=1,∴=10,a=10b.又由x∈R,f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x,即x2+xlga+lgb≥0,对x∈R恒成立,由Δ=lg2a-4lgb≤0,整理得(1+lgb)2-4lgb≤0即(lgb-1)2≤0,只有lgb=1,不等
12、式成立.即b=10,∴a=100.∴f(x)=x2+4x+1=(2+x)2-3当x=-2时,f(x)min=-3.20.解法一:作差法
13、loga(1-x)
14、-
15、loga(1+x)
16、=
17、
18、-
19、
20、=(
21、lg(1-x)
22、-
23、lg(1+x)
24、)∵0<x<1,∴0<1-x<1<1+x∴上式=-[(lg(1-x)+lg(1+x)]=-·lg(1-x2)由0<x<1,得,lg(1-x2)<0,∴-·lg(1-x2)>0,学而思教育·学习改变命运思考成就未
此文档下载收益归作者所有