二次函数的应用随堂练习1

二次函数的应用随堂练习1

ID:33881979

大小:1.83 MB

页数:6页

时间:2019-03-01

二次函数的应用随堂练习1_第1页
二次函数的应用随堂练习1_第2页
二次函数的应用随堂练习1_第3页
二次函数的应用随堂练习1_第4页
二次函数的应用随堂练习1_第5页
资源描述:

《二次函数的应用随堂练习1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数的应用第1课时 二次函数的应用(1)练习1.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是(  ).A.第8秒B.第10秒C.第12秒D.第15秒2.从地面竖直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是h=9.8t-4.9t2,那么小球运动中的最大高度h最大=__________.3.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来

2、提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(其中0<x≤11).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.4.某公

3、司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式.(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?5.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求

4、出金属框围成的图形的最大面积.6.“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系.(1)试求出y与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?7.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=-10x+500.(1)设

5、李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)8.(创新应用)农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图所示的一个矩形羊圈.(1)请你求出张大伯的矩形羊圈的面积;(2)请你判断他的设计

6、方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.参考答案[来1.解析:由题意可知,抛物线y=ax2+bx+c的对称轴为x=10.5,且a<0.又因为x=10秒离对称轴较近,当x=10秒时,y最大.答案:B2.答案:4.9米3.解:(1)①10+7x ②12+6x(2)y=(12+6x)-(10+7x)=2-x.(3)∵w=2(1+x)(2-x)=-2x2+2x+4,∴w=-2(x-0.5)2+4.5.∵-2<0,0<x≤11,∴w有最大值.∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利

7、润是4.5万元.4.解:(1)y=(x-50)·w=(x-50)·(-2x+240)=-2x2+340x-12000,∴y与x的关系式为y=-2x2+340x-12000.(2)y=-2x2+340x-12000=-2(x-85)2+2450,∴当x=85时,y的值最大(3)当y=2250时,可得方程-2(x-85)2+2450=2250.解得x1=75,x2=95.根据题意,x2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.5.解:根据题意可得:等腰直角三角形的直角边长为m,矩形的一边长为2xm.其相邻边长为=10-(2+)x.所

8、以该金属框围成的面积S=2x·[10-(2+)x]+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。