欢迎来到天天文库
浏览记录
ID:38563245
大小:274.00 KB
页数:9页
时间:2019-06-15
《2.4二次函数的应用(练习一).4二次函数的应用(练习一)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.4二次函数的应用(一)一、选择题:1.二次函数y=ax2+bx+c的图象如图2-90所示,则下列判断错误的是()A.a>0B.c<0C.函数有最小值D.y随x的增大而减小2.关于二次函数y=x2+4x-7的最大(小)值叙述正确的是()A.当x=2时,函数有最大值B.当x=2时,函数有最小值C.当x=-2时,函数有最大值D.当x=-2时,函数有最小值3.(2014年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353下列结论:(1)ac<0;(2
2、)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为( ) A.4个B.3个C.2个D.1个4.(2014年山东泰安,第17题3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( ) A.BCD.5.(2014•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△A
3、BC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是() A.B.C.D.二、填空题6.抛物线y=-2x2+5x-l有点,这个点的坐标是.7.把二次函数y=2x2-4x+5化成y=a(x-h)2+k的形式是,其图象开口方向,顶点坐标是,当x=时,函数y有最值,当x时,y随x的增大而减小.8.(2014•扬州,第16题,3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为 .(第3题图)9.(2014•菏泽,第
4、12题3分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=______.三、解答题:10.已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=-3,求此二次函数的解析式.11.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只熊猫的成本为R元,售价为每只P元,且R,P与x之间的函数关系式分别为R=500+30x,P=170-2x.(1)当日产量为多少只时,每日获得
5、的利润为1750元?(2)当日产量为多少只时,每日可获得最大利润?最大利润是多少元?12.2014•广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.13.某商场试销一种成本为60元/件的T恤衫,规定试销期间销售单价不低于成本单价,获利不得高于成本单价的40%.经试销发现,销售量y(件)与销
6、售单价x(元/件)符合一次函数y=kx+b,且当x=70时,y=50;当x=80时,y=40.(1)求一次函数y=kx+b的解析式;(2)若该商场获得的利润为w元,试写出利润w与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润?最大利润是多少?14.南博汽车城销售某种型号的汽车,每辆车的进货价为25万元.市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆,如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)(1)求y与x的函数关系
7、式,在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?15.(2014•广西玉林市、防城港市,第26题12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若
8、P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.参考答案1.D[提示:对称轴异侧的增减性不一致.]2.D[提示:y=x2+4x-7=(x+2)2-11.∵a>0,∴函数有最小值.当x=-2时,函数y=(x+
此文档下载收益归作者所有