一元线性回归模型的置信区间与预测

一元线性回归模型的置信区间与预测

ID:33831159

大小:207.00 KB

页数:10页

时间:2019-03-01

一元线性回归模型的置信区间与预测_第1页
一元线性回归模型的置信区间与预测_第2页
一元线性回归模型的置信区间与预测_第3页
一元线性回归模型的置信区间与预测_第4页
一元线性回归模型的置信区间与预测_第5页
资源描述:

《一元线性回归模型的置信区间与预测》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§2.5一元线性回归模型的置信区间与预测多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。 一、参数估计量的置信区间在前面的课程中,我们已经知道,线性回归模型的参数估计量是随机变量的函数,即:,所以它也是随机变量。在多次重复抽样中,每次的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二

2、者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。即回答以何种置信水平位于之中,以及如何求得a。在变量的显著性检验中已经知道(2.5.1)这就是说,如果给定置信水平,从t分布表中查得自由度为(n-k-1)的临界值,那么t值处在的概率是。表示为即于是得到:在()的置信水平下的置信区间是i=0,1(2.5.3)在某例子中,如果给定,查表得从回归计算中得到 根据(2.5.2)计算得到的置信区间分别为和(0.1799,0.2401)显然,参数

3、的置信区间要小。在实际应用中,我们当然希望置信水平越高越好,置信区间越小越好。如何才能缩小置信区间?从(2.5.3)式中不难看出:(1)增大样本容量n。在同样的置信水平下,n越大,从t分布表中查得自由度为(n-k-1)的临界值越小;同时,增大样本容量,在一般情况下可使估计值的标准差减小,因为式中分母的增大是肯定的,分子并不一定增大。(2)更主要的是提高模型的拟合度,以减小残差平方和。设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间也为0。(3)提高样本观测值的分散度。在一般情况下,样本观测值越分散,标准差越小。置信水平与

4、置信区间是矛盾的。置信水平越高,在其他情况不变时,临界值越大,置信区间越大。如果要求缩小置信区间,在其他情况不变时,就必须降低对置信水平的要求。 二、预测值的置信区间1、点预测计量经济学模型的一个重要应用是经济预测。对于模型,如果给定样本以外的解释变量的观测值,有因是前述样本点以外的解释变量值,所以和是不相关的。引用已有的OLS的估计值,可以得到被解释变量的点预测值:(2.5.4)但是,严格地说,这只是被解释变量的预测值的估计值,而不是预测值。原因在于两方面:一是模型中的参数估计量是不确定的,正如上面所说的;二是随机项的影响。所以,我们得到的仅

5、是预测值的一个估计值,预测值仅以某一个置信水平处于以该估计值为中心的一个区间中。于是,又是一个区间估计问题。1、区间预测如果已经知道实际的预测值,那么预测误差为显然,是一随机变量,可以证明而因为由原样本的OLS估计值求得,而与原样本不相关,故有:,可以计算出来:(2.5.5)(2.5.6)因和均服从正态分布,可利用它们的性质构造统计量,求区间预测值。利用构造统计量为:将用估计值代入上式,有这样,可得显著性水平下的置信区间为(2.5.7)(2.5.7)式称为的均值区间预测。同理,利用构造统计量,有将用估计值代入上式,有:根据置信区间的原理,得显著

6、性水平下的置信区间:(2.5.8)上式称为的个值区间预测,显然,在同样的下,个值区间要大于均值区间。(2.5.7)和(2.5.8)也可表述为:的均值或个值落在置信区间内的概率为,即为预测区间的置信度。或者说,当给定解释变量值后,只能得到被解释变量或其均值以的置信水平处于某区间的结论。经常听到这样的说法,“如果给定解释变量值,根据模型就可以得到被解释变量的预测值为……值”。这种说法是不科学的,也是计量经济学模型无法达到的。如果一定要给出一个具体的预测值,那么它的置信水平则为0;如果一定要回答解释变量以100%的置信水平处在什么区间中,那么这个区间

7、是∞。在实际应用中,我们当然也希望置信水平越高越好,置信区间越小越好,以增加预测的实用意义。如何才能缩小置信区间?从(2.5.5)和(2.5.6)式中不难看出:(1)增大样本容量n。在同样的置信水平下,n越大,从t分布表中查得自由度为(n-k-1)的临界值越小;同时,增大样本容量,在一般情况下可使减小,因为式中分母的增大是肯定的,分子并不一定增大。(2)更主要的是提高模型的拟合优度,以减小残差平方和。设想一种极端情况,如果模型完全拟合样本观测值,残差平方和为0,则置信区间长度也为0,预测区间就是一点。(3)提高样本观测值的分散度。在一般情况下,

8、样本观测值越分散,作为分母的的值越大,致使区间缩小。置信水平与置信区间是矛盾的。置信水平越高,在其他情况不变时,临界值越大,置信区间越大。如果要求缩小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。