欢迎来到天天文库
浏览记录
ID:33711516
大小:397.50 KB
页数:13页
时间:2019-02-28
《电磁感应中地“杆+导轨”类问题(3大模型)解题技巧》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、标准实用辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m、阻值也为R的金属杆cd垂直放在导轨上
2、,杆cd由静止释放,下滑距离x时达到最大速度。重力加速度为g,导轨电阻不计,杆与导轨接触良好。求:(1)杆cd下滑的最大加速度和最大速度;(2)上述过程中,杆上产生的热量。【思路点拨】:【答案】:(1)gsinθ,方向沿导轨平面向下;,方向沿导轨平面向下;(2)mgxsinθ-【解析】:(1)设杆cd下滑到某位置时速度为v,则杆产生的感应电动势E=BLv回路中的感应电流I=杆所受的安培力F=BIL根据牛顿第二定律有mgsinθ-=ma当速度v=0时,杆的加速度最大,最大加速度a=gsinθ,方向沿导轨平面向下当杆的加速度a=0时,速度最大,最大
3、速度vm=,方向沿导轨平面向下。文案大全标准实用(2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgxsinθ=Q总+mvm2又Q杆=Q总,所以Q杆=mgxsinθ-。【内化模型】单杆+电阻+导轨四种题型剖析题型一(v0≠0)题型二(v0=0)题型三(v0=0)题型四(v0=0)说明杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,倾角为α,杆cd质量为m,两导轨间距为L竖直轨道光滑,杆cd质量为m,两导轨间距为L示意图力学
4、观点杆以速度v切割磁感线产生感应电动势E=BLv,电流I=,安培力F=BIL=。杆做减速运动:v↓⇒F↓⇒a↓,当v=0时,a=0,杆保持静止开始时a=,杆cd速度v↑⇒感应电动势E=BLv↑⇒I↑⇒安培力F安=BIL↑,由F-F安=ma知a↓,当a=0时,v最大,vm=开始时a=gsinα,杆cd速度v↑⇒感应电动势E=BLv↑⇒I↑⇒安培力F安=BIL↑,由mgsinα-F安=ma知a↓,当a=0时,v最大,vm=开始时a=g,杆cd速度v↑⇒感应电动势E=BLv↑⇒I↑⇒安培力F安=BIL↑,由mg-F安=ma知a↓,当a=0时,v最大,
5、vm=图像观点能量观点动能全部转化为内能:Q=mv02F做的功一部分转化为杆的动能,一部分转化为内能:WF=Q+mvm2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:WG=Q+mvm2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:WG=Q+mvm2【应用模型】文案大全标准实用【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。现用沿导轨平面向上的恒定外力F作用在金属杆cd上,使cd由静止开始沿导轨向上运动,求cd的最大加速度和最大速度。【答案】:见解析【解析】:分析金属杆运动时的受力情况可知,金
6、属杆受重力、导轨平面的支持力、拉力、摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有:F-mgsinθ-F安-f=ma又F安=BIL,I==,所以F安=BIL=f=μN=μmgcosθ故F-mgsinθ--μmgcosθ=ma当速度v=0时,杆的加速度最大,最大加速度am=-gsinθ-μgcosθ,方向沿导轨平面向上当杆的加速度a=0时,速度最大,vm=。类型二:单杆+电容器(或电源)+导轨模型类【初建模型】【例题2】(2017·北京模拟)如图所示,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平
7、面内,相距为L。一质量为m的导体棒cd垂直于MN、PQ放在轨道而上,与轨道接触良好。轨道和导体棒的电阻均不计。(1)如图1所示,若轨道左端M、P间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。请通过公式推导证明:在任意一段时间Δt内,拉力F所做的功与电路获得的电能相等。(2)如图2所示,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻,闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度vm,求此时电源的输出功率。(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从
8、静止开始向右运动。电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。文案
此文档下载收益归作者所有