欢迎来到天天文库
浏览记录
ID:33232864
大小:403.00 KB
页数:6页
时间:2019-02-22
《高三文科数学第二轮复习资料278.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、!高三文科数学第二轮复习资料——《立体几何》专题一、空间基本元素:直线与平面之间位置关系的小结.如下图:条件结论线线平行线面平行面面平行垂直关系线线平行如果a∥b,b∥c,那么a∥c如果a∥α,aβ,β∩α=b,那么a∥b如果α∥β,α∩γ=a,β∩γ=b,那么a∥b如果a⊥α,b⊥α,那么a∥b线面平行如果a∥b,aα,bα,那么a∥α——如果α∥β,aα,那么α∥β——面面平行如果aα,bα,cβ,dβ,a∥c,b∥d,a∩b=P,那么α∥β如果aα,bα,a∩b=P,a∥β,b∥β,那么α∥β如果α∥β,β∥γ,那么α∥γ如果a⊥α,a⊥β,那么α∥β条件结论线线垂直线面垂直面面垂直平行
2、关系线线垂直二垂线定理及逆定理如果a⊥α,bα,那么a⊥b如果三个平面两两垂直,那么它们交线两两垂直如果a∥b,a⊥c,那么b⊥c线面垂直如果a⊥b,a⊥c,bα,cα,b∩c=P,那么a⊥α——如果α⊥β,α∩β=b,aα,a⊥b,那么a⊥β如果a⊥α,b∥a,那么b⊥α面面垂直定义(二面角等于900)如果a⊥α,aβ,那么β⊥α————二、练习题:1.l1∥l2,a,b与l1,l2都垂直,则a,b的关系是A.平行B.相交C.异面D.平行、相交、异面都有可能2.三棱柱ABC—A1B1C1的体积为V,P、Q分别为AA1、CC1上的点,且满足AP=C1Q,则四棱锥B—APQC的体积是ABDCA1
3、D1C1B1PQ图1A.B.C.D.3.设、、为平面,、、为直线,则的一个充分条件是A. B.C.D.!4.如图1,在棱长为的正方体中,P、Q是对角线上的点,若,则三棱锥的体积为A.B.C.D.不确定5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是ABQCQDQ 6.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H;(3)A1O⊥平面BDF;(4)平面BDF⊥平面AA1C.7.如图,斜三棱柱ABC—A’B’C’中,底面是边
4、长为a的正三角形,侧棱长为b,侧棱AA’与底面相邻两边AB、AC都成450角,求此三棱柱的侧面积和体积.8.在三棱锥P—ABC中,PC=16cm,AB=18cm,PA=PB=AC=BC=17cm,求三棱锥的体积VP-ABC.!9.如图6为某一几何体的展开图,其中是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S、D、A、Q及P、D、C、R共线.AQBPDSCR图6沿图中虚线将它们折叠起来,使P、Q、R、S四点重合,请画出其直观图,试问需要几个这样的几何体才能拼成一个棱长为6的正方体?ANBCDA1B1C1D1图10M10.如图10,在正四棱柱ABCD-A1B1C1D1中,AB=,
5、AA1=2,M、N分别是BB1、DD1的中点.(1)求证:平面A1MC1⊥平面B1NC1;(2)若在正四棱柱ABCD-A1B1C1D1的体积为V,三棱锥M-A1B1C1的体积为V1,求V1:V的值.图11DEA1CBAC1B111.直三棱柱ABC-A1B1C1中,,E是A1C的中点,且交AC于D,(如图11).(I)证明:平面;(II)证明:平面.!参考答案1.D2.B3.D4.A5.D6.解析:(1)欲证EG∥平面BB1D1D,须在平面BB1D1D内找一条与EG平行的直线,构造辅助平面BEGO’及辅助直线BO’,显然BO’即是.(2)按线线平行线面平行面面平行的思路,在平面B1D1H内寻找B
6、1D1和O’H两条关键的相交直线,转化为证明:B1D1∥平面BDF,O’H∥平面BDF.(3)为证A1O⊥平面BDF,由三垂线定理,易得BD⊥A1O,再寻A1O垂直于平面BDF内的另一条直线.猜想A1O⊥OF.借助于正方体棱长及有关线段的关系计算得:A1O2+OF2=A1F2A1O⊥OF.(4)∵CC1⊥平面AC,∴CC1⊥BD又BD⊥AC,∴BD⊥平面AA1C又BD平面BDF,∴平面BDF⊥平面AA1C7.解析:在侧面AB’内作BD⊥AA’于D,连结CD.∵AC=AB,AD=AD,∠DAB=∠DAC=450∴△DAB≌△DAC∴∠CDA=∠BDA=900,BD=CD∴BD⊥AA’,CD⊥AA
7、’∴△DBC是斜三棱柱的直截面在Rt△ADB中,BD=AB·sin450=∴△DBC的周长=BD+CD+BC=(+1)a,△DBC的面积=∴S侧=b(BD+DC+BC)=(+1)ab∴V=·AA’=8.解析:取PC和AB的中点M和N∴在△AMB中,AM2=BM2=172-82=25×9∴AM=BM=15cm,MN2=152-92=24×6∴S△AMB=×AB×MN=×18×12=108(cm2)!
此文档下载收益归作者所有