基于图和低秩表示的张量分解方法及应用研究

基于图和低秩表示的张量分解方法及应用研究

ID:32973411

大小:9.84 MB

页数:108页

时间:2019-02-18

基于图和低秩表示的张量分解方法及应用研究_第1页
基于图和低秩表示的张量分解方法及应用研究_第2页
基于图和低秩表示的张量分解方法及应用研究_第3页
基于图和低秩表示的张量分解方法及应用研究_第4页
基于图和低秩表示的张量分解方法及应用研究_第5页
资源描述:

《基于图和低秩表示的张量分解方法及应用研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得安徽大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。学位论文作者签名:参1蝴签字魄叫降‘月弓日学位论文版权使用授权书本学位论文作者完全了解安徽大学有关保留、使用学位论文的规定,有权休留井向国冢有关郡j。]或机构送交论文的复印件和磁盘,允

2、许论文被查阅和借阅。本人授权安徽大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。(保密的学位论文在解密后适用本授权书)学位敝储始剖蚴导师鲐够∥签字日期:杪f睁6月号日签字日期:多,够年/月岁日安徽大学博士学位论文摘要大多数现有的高维图像、视频数据,一般本身就具有天然的张量结构,或者可以被组织成张量结构。张量结构具有良好的表达能力和计算特性,为此本文在总结和继承前人的研究成果的基础上,对基于张量的相关算法进行了研究,主要研究内容如下:(

3、1)提出了图像内容相关的支持张量机分类器初始化方法。传统的支持张量机初始化方法以及非负矩阵降维方法均采用随机初始化方式,这种方法的缺点体现在两个方面:一方面,在没有数据的情况下,需要假定其分布,比如高斯分布,均匀分布等,这些分布的参数也很难假定,只能通过对测试数据多次验证的方式来确定;另一方面,采用随机初始化的方式很难捕获到图像本身的特性,所以随机方式会最终影响到分类器的分类结果以及降维结果的有效性。本文针对这两种随机初始化问题,提出图像内容相关的初始化方法,利用图像内容初始化支持张量机及非负矩阵

4、分解方法。首先将支持张量机所要处理的数据构造成张量形式,对每幅图像,构造三阶图像特征张量,将图像集合构造成四阶张量。其次,提出了一种加权高阶奇异值分解算法对支持张量机进行初始化,该方法结合图谱理论与流形学习算法,利用图像数据集对支持张量机初始化,避免了随机性对分类器的影响。接着,对于子空间降维方法,本文选用非负矩阵分解方法对三阶图像特征张量进行降维,提出了基于二维主成分分析的方法初始化非负矩阵分解方法,充分利用了图像内容相关信息。最后,对输入支持张量机的数据,利用改进的非负矩阵分解算法进行降维,在

5、该降维后的子空间中对支持张量机进行训练,利用该降维方法与改进的支持张量机分类器相结合进行图像分类。实验表明,与其他相关算法相比,本文所提方法分类结果较好。(2)提出了一种基于图和低秩表示的非负张量分解算法。指出如果在图像处理领域中对图像数据集采用非负矩阵分解方法,需要把每个图像数据拉直成向量形式,在转换过程中会丢失图像数据本身的结构信息,破坏图像的空间几何结构,为了避免这些问题,提出了两种非负张量分解算法的改进方法,并利用这两种子空间降维方法对图像进行分类实验。首先,提出了基于图的非负张量分解算法

6、。安徽大学博士学位论文基于图和低秩表示的张量分解方法及应用研究在基于图的非负矩阵分解算法的基础上,扩展非负张量分解算法,继续借鉴图谱理论与流形学习算法的优势,把数据集的结构信息引入到非负张量分解算法中。其次,由于构建近邻图对于大数据来说太过耗费时间,计算量过大,提出了一种基于低秩表示的非负张量分解算法。作为压缩感知理论的推广和发展,低秩表示将矩阵的秩作为一种稀疏测度,由于矩阵的秩反映了矩阵的固有特性,所以低秩表示能有效的分析和处理矩阵数据,本文把低秩表示引入到张量模型中,即引入到非负张量分解算法中

7、,进一步扩展非负张量分解算法。实验结果表明,本文所提两种算法与其他相关算法相比,分类结果较好。(3)提出了一种基于高阶奇异值分解的多级非负低秩稀疏矩阵分解算法。首先对低秩稀疏矩阵分解的计算方法进行了详细介绍。其次,对视频图像序列数据的张量表示及必要性做详细地说明,并对高阶奇异值分解与低秩稀疏矩阵分解的结合方法作出说明,指出视频图像序列数据的排列方式的重要性,以及高阶奇异值分解对数据排序的影响。本文在此基础上,提出了一种高阶奇异值分解下的多级非负低秩稀疏矩阵分解算法,该方法为了确保视频图像序列数据的

8、特征不会被削弱,并实现原视频数据的纯加性描述,引入了非负约束,把数据逐级分解成时间和空间信息。另外,由于该方法是逐级分解方式,所以非负约束尤为重要。二级或更高级分解过程仅针对低秩矩阵,分解结果为稀疏矩阵对应时间信息(运动信息),低秩矩阵对应空间信息(背景信息)。通过对两个视频图像序列进行实验,说明了本文所提方法对提取前景及背景信息均有效。关键词:图;图像分类:低秩表示;非负;张量分解n安徽大学博士学位论文AbstractWeknowthatmostoftheexistinghigh

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。