资源描述:
《两类非线性波动方程行波解》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2万方数据摘要摘要在科学应用中出现的重大问题中,各种各样非线性色散方程显式精确解的研究已经引起了人们的关注.这些显式精确解的研究,采用了数学上各种分析方法,诸如反散射法,达布变换法,双线性法,李群方法,动力系统分支理论,正余弦函数方法,双曲正切函数法,Fan函数展开法,齐次平衡方法等,目前,没有统一的方法可以用来处理所有类型的非线性微分方程.在寻找非线性扩散方程精确解的各种方法中,双曲正切函数法和正余弦函数方法是求精确解最直接而有效的代数方法之一.本文将在第三章采用扩展双曲正切函数法得到(N+1)维
2、sine-cosine-Gordon方程的显式精确扭结波解(或反扭结波解)和显式精确周期波解.本文将在第四章采用A.M.Wazwaz推广的正余弦函数方法来研究一类非线性四阶广义的Camassa-Holm方程.从而显示这种方法是一种求解非线性微分方程的有效方法.最后对本文的工作进行了总结,提出了有待于进一步解决的问题.关键词:非线性微分方程;孤立波解;扩展正切双曲函数法;正余弦函数方法I万方数据AbstractAbstractStudiesofvariousexplicitexactsolutions
3、ofnonlineardispersiveequationshadattractedmuchattentioninconnectionwiththeimportantproblemsthatariseinscientificapplications.Mathematically,theseexplicitexactsolutionshavebeenstudiedbyusingvariousanalyticalmethods,suchasinversescatteringmethod,Darbouxt
4、ransformationmethod,Hirotabilinearmethod,Liegroupmethod,bifurcationmethodofdynamicsystems,sine-cosinemethod,tanhfunctionmethod,Fan-expansionmethod,homogenousbalancemethodandsoon.Practically,thereisnounifiedtechniquethatcanbeemployedtohandlealltypesofno
5、nlineardifferentialequations.Thetanhmethodandthesine-cosinemethodareonesofmostdirectandeffectivealgebraicmethodforfindingexactsolutionsofnonlineardiffusionequations.InChapter3,the(N+1)-dimensionalsine-cosine-Gordonequationsarestudied.Theexistenceofkink
6、(oranti-kink)travelingwaveexplicitexactsolutionsandperiodictravelingwaveexplicitexactsolutionsareproved,byusingtheextendedtanhmethod.InChapter4,aclassofnonlinearfourthordervariantofageneralizedCamassa-Holmequationisstudiedbyusingthesine-cosinemethodext
7、endedbyA.M.Wazwaz.Itisshownthattheextendedtanhmethodprovidesapowerfulmathematicaltoolforsolvingagreatmanynonlinearpartialdifferentialequationsinmathematicalphysics.Finally,thesummaryofthisthesisandtheprospectoffuturestudyaregiven.KeyWords:nonlineardiff
8、erentialequation;solitarywavesolution;extendedtanhfunctionmethod;sine-cosinemethodII万方数据目录目录摘要....................................................................................................................................IAbstract.