欢迎来到天天文库
浏览记录
ID:32465496
大小:2.04 MB
页数:69页
时间:2019-02-06
《基于人工智能的电梯群控算法的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、东北大学硕士学位论文摘要基于人工智能的电梯群控算法研究摘要随着现代化城市的快速发展和高层建筑的日益增多,高层建筑内交通变得越来越复杂,常常需要几台甚至几十台电梯组成电梯群来运送乘客,电梯群控算法的研究已成为国内外研究的热点之一。对于一个复杂的、具有多种要求的电梯群控系统,本文采用多种智能算法相结合对交通流迸行分析,以识别当前系统的交通流模式,从而根据不同的模式采用不同的派梯方法。针对现有算法中存在的不足,将遗传算法应用到群控系统中,提高电梯群的运行效率、降低能量损耗,并通过仿真试验验证了算法的先进性、有效性。首先,回顾了电梯群控系统的国内外发展现状,介绍了现有
2、的各种电梯群控系统的优点与不足,提出了基于遗传算法的电梯群控算法;并在评估电梯群控系统的四种性能指标和分析派梯过程中系统容易变化的因素后,建立了电梯群控的多目标评价函数。然后,提出了一种基于遗传算法的径向基函数(砌强)神经网络的电梯群控系统的交通流模式的识别方法。文章采用径向基函数神经网络来识别电梯群控系统的交通流模式,用k一均值聚类算法确定网络径向基函数的中心和宽度;用一次最小二乘法来计算权值矩阵,并用遗传算法优化神经网络的隐层结构。试验表明,该方法收敛速度快、识别精度高。接着提出了一种基于遗传算法的层间交通模式下的电梯群控派梯算法。以多目标的评价函数的优化
3、组合作为目标寻求最优派梯方案,根据电梯的运行状态和各层站的外呼信号,构造了适应度函数。在进化初期阶段,采用标准遗传算法在解空间中全局搜索,当种群收敛到最优解附近对,弓I入自适应局部搜索算子,以提高算法的局部搜索能力,仿真结果表明,该算法克服了标准遗传算法后期收敛速度慢的缺点,同时较好地满足了电梯群控系统的实时要求。最后,建立了电梯群控系统的虚拟仿真环境,模拟实际系统的运行,验证各种算法的性能指标。关键词:电梯群控;遗传算法;RBF神经网络;交通流模式-Ⅱ一东北大学硕士学位论文ResearchofElevatorGroupControlAlgorithmBase
4、dOllArtificialIntelligenceAbstractWiththedevelopmentofmodemcity,moreandmo∞skyscraperisbuiltinthecitytoday.Itisindispensabletotransportpassengerswithelevatorgroupcomposedofseverallifts.Accordingly,theeon打ollingalgorithmofelevatorgrouphasalreadybecomethefocusofresearchathomeandabroad.
5、Foracomplicatedelevatorgroupcontrolsystemt雹ocs).becauseofmanykindsofdemands,inthispapermanyintegratedintelligentallocationelevatoralgorithmsaleadoptedtoanalyzetrafficflowandproceedtopattern-recognitionoptimally.Consequently,avarietyofalgorithmsofallocatingelevatora托adoptedaccordingt
6、odifferentpatterns.Tomanydisadvantagesofcurrentmethods,thispaperpresentsanalgorithmofallocatingelevatorbasedonGA.Theapproachincreasesrunningefficiencyofelevatorgroup,andreducesenergy-consuming.Simulationexperimentvalidatestheadvancedperformanceandeffectiveperformanceofthemethod.Firs
7、tly,WereviewedthedevelopmentandcurrentstatusofEGCSindomesticandinternational,andintroducedadvantagesandshortcomingsofvarietyofEGCS.Wealsoestablishevaluationfunctionofmulti·objectforEGCS,whichisbasedonevaluatingfourperformanceindexesandanalyzinguncertainfactorsinthecourseofallocating
8、elevator.Secondly,w
此文档下载收益归作者所有