欢迎来到天天文库
浏览记录
ID:3199000
大小:32.00 KB
页数:3页
时间:2017-11-20
《数学在生活中的运用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、数学在生活中的应用数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事”如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。因此我们的研究性课题是数学在生活中的运用,
2、希望通过这次小研究,提高我们的数学能力,能够在生活中自觉地运用数学知识。结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活实际思考,整理归纳如下。第一部分函数的应用我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。一、一元一次函数的应用一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性
3、依存关系,则可利用一元一次函数解决问题。例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。过年这几天和家人上街购物,商家纷纷采取各种优惠措施,我就运用自己的数学函数知识精打细算了一次。我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方
4、法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90%付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。我在纸上写道:设某顾客买茶杯x只,付款y元,(x>3且x∈N),则用第一种方法付款y1=4×20+(x-4)×5=5x+60;用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.接着比较y1y2的相对大小.设d=y1-y2=5
5、x+60-(4.5x+72)=0.5x-12.然后便要进行讨论:当d>0时,0.5x-12>0,即x>24;当d=0时,x=24;当d<0时,x<24.quickly.(23)GaoChanghainightrescuedcompatriotsinJanuary1943,theJapanesecontrolafterSuJiahualongthehighway,tointensifyguerrilla"raids".Oneday,theJapanesearmyfromWuzhenareacaught53"Shina"isheldin
6、springqiaotufarm综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!二、一元二次函数的应用在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提
7、高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。三、三角函数的应用三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。在山林绿化中,须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。第二部分不等式的应用日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方
8、程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均值不等式知识在日常生活中的应用,均值不等
此文档下载收益归作者所有