资源描述:
《27.2.3相似三角形的应用举例》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.2.3相似三角形的应用举例南充十中康健军1.定义:2.定理(平行法):3.判定定理一(边边边):4.判定定理二(边角边):5.判定定理三(角角):1、判断两三角形相似有哪些方法?2、相似三角形有什么性质?对应角相等,对应边的比相等世界上最高的楼——台北101大楼怎样测量这些非常高大物体的高度?世界上最宽的河——亚马孙河怎样测量河宽?胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过
2、几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。小小旅行家:走近金字塔小小考古家:埃及著名的考古专家穆罕穆德决定重新测量胡夫金字塔的高度.在一个烈日高照的上午.他和儿子小穆罕穆德来到了金字塔脚下,他想考一考年仅14岁的小穆罕穆德.给你一条2米高的木杆,一把皮尺.你能利用所学知识来测出塔高吗?2米木杆皮尺ACBDE┐┐借太阳的光辉助我们解题,你想到了吗?古代一位数学家想出了一种测量金字塔高度的方法:如图所示,为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较棒子的影长A′B′与金字塔的影长AB,即可近似算出金字塔的高度OB.解:由于太阳光是平行
3、光线,因此∠OAB=∠O′A′B′.又因为∠ABO=∠A′B′O′=90°.所以△OAB∽△O′A′B′,OB∶O′B′=AB∶A′B′,即该金字塔高为137米.例1:如果O′B′=1,A′B′=2,AB=274,求金字塔的高度OB.AFEBO┐┐还可以有其他方法测量吗?一题多解OBEF=OAAF△ABO∽△AEFOB=OA·EFAF平面镜ABOA′B′O′6m1.2m1.6m物1高:物2高=影1长:影2长测高的方法测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比例”的原理解决。方法归纳例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目
4、标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.ADCEB解:因为∠ADB=∠EDC,∠ABC=∠ECD=90°,所以△ABD∽△ECD,答:两岸间的大致距离为100米.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.(方法一)例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的
5、交点D.ADCEB(方法二)我们在河对岸选定一目标点A,在河的一边选点D和E,使DE⊥AD,然后选点B,作BC∥DE,与视线EA相交于点C。此时,测得DE,BC,BD,就可以求两岸间的大致距离AB了。ADEBC此时如果测得DE=120米,BC=60米,BD=50米,求两岸间的大致距离AB.请同学们自已解答并进行交流例3:已知左,右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。一个身高1.6m的人沿着正对着两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点C?KⅡ盲区观察者看不到
6、的区域。仰角:视线在水平线以上的夹角。水平线视线视点观察者眼睛的位置。(1)FBCDHGlAK(1)FBCDHGlAⅠKFABCDHGKⅠⅡl(2)分析:假设观察者从左向右走到点E时,他的眼睛的位置点F与两颗树的顶端点A、C恰在一条直线上,如果观察者继续前进,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它。E由题意可知,AB⊥L,CD⊥L,∴AB∥CD,△AFH∽△CFK∴FHFK=AHCK即FHFH+5=8-1.612-1.6解得FH=8∴当他与左边的树的距离小于8m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,就不能看见
7、右边较高的树的顶端点C练习1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?解:即高楼的高度为36米。因为在同一时刻物体的高度与它的影长成正比例2.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高m。OBDCA┏┛81m16m0.5m?练习3.为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE=30m,那么你能算出池塘的宽AB吗?AB
8、CDE4、如图,一条河的两岸有一段是平行的,在河的南