欢迎来到天天文库
浏览记录
ID:31958129
大小:562.00 KB
页数:24页
时间:2019-01-29
《2017浦东初三数学一模》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、可编辑版2017浦东新区区数学一模一.选择题(本大题共6题,每题4分,共24分)1.在下列y关于x的函数中,一定是二次函数的是( )A.y=2x2B.y=2x﹣2C.y=ax2D.2.如果向量、、满足+=(﹣),那么用、表示正确的是( )A.B.C.D.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于( )A.B.2sinαC.D.2cosα4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是( )A.B.C.D.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F
2、,如果AD=9,CE=12,那么下列结论不正确的是( )A.AC=10B.AB=15C.BG=10D.BF=156.如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为( )A.y=x2+2B.y=x2﹣2x﹣1C.y=x2﹣2xD.y=x2﹣2x+1 二.填空题(本大题共12题,每题4分,共48分)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于 cm.8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= .9.已知
3、
4、=2,
5、
6、=4,且和反向,用向量表示向量= .10.
7、如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m= .11.如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是 .Word完美格式可编辑版12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是 .13.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= .14.二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1 y2(填“>”、“=”或“<”)15.如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE
8、=5米,那么树的高度AB= 米.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是 .18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= . 三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)Word完美格式可编辑版19.计算:2cos230°﹣sin3
9、0°+.20.如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=,=,求向量;(用向量、表示)21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度
10、的情况下,坡道高度应符合以下表中的规定:坡度1:201:161:12最大高度(米)1.501.000.75(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥Word完美格式可编辑版AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.24.已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物
11、线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求
此文档下载收益归作者所有