初中列方程解应用题行程问题专题

初中列方程解应用题行程问题专题

ID:31946184

大小:435.52 KB

页数:16页

时间:2019-01-29

初中列方程解应用题行程问题专题_第1页
初中列方程解应用题行程问题专题_第2页
初中列方程解应用题行程问题专题_第3页
初中列方程解应用题行程问题专题_第4页
初中列方程解应用题行程问题专题_第5页
资源描述:

《初中列方程解应用题行程问题专题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。1.单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从提高到,运行时间缩短了。甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路

2、程为,那么列车在两城市间提速前的运行时间为,提速后的运行时间为.【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间.【列出方程】.例2:某铁路桥长1000,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1,整列火车完全在桥上的时间共。求火车的速度和长度。【分析】如果设火车的速度为,火车的长度为,用线段表示大桥和火车的长度,根据题意可画出如下示意图:y100060x1000y40x【等量关系式】火车行驶的路程=桥长+火车长;火车行驶的路程=桥长-火车长【列出方程组】举一反三:1.小明家和学校相距。小明从家出发

3、到学校,小明先步行到公共汽车站,步行的速度为60,再乘公共汽车到学校,发现比步行的时间缩短了,已知公共汽车的速度为,求小明从家到学校用了多长时间。2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高.求提速后的火车速度。(精确到)3.徐州至上海的铁路里程为,从徐州乘”C“字头列车A,”D”字头列车B都可直达上海,已知A车的速度为B车的2倍,且行驶的时间比B车少.求A车的速度及行驶时间。(同学们可能会认为这是双人行程问题,其实这题的类型可归

4、结于例1的类型,把B车的速度看成是A提速后的速度,是不是也可看成单人单程的问题呀!)4.一列匀速前进的火车用15秒的时间通过了一个长300米的隧道(即从车头进入隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,(光速)1)求这列火车的长度2)如果这列火车用25秒的时间通过了另一个隧道,求这个隧道的长2.单人双程(等量关系式:来时的路程=回时的路程):例1:某校组织学生乘汽车去自然保护区野营,先以的速度走平路,后又以的速度爬坡,共用了;返回时汽车以的速度下坡,又以的速度走平路,共用了.学校距自然

5、保护区有多远。【分析】如果设学校距自然保护区为,由题目条件:去时用了,则有些同学会认为总的速度为,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为,坡路的长度为,则去时走平路用了,去时爬坡用了,而去时总共用了,这时,时间是可以相加的;回来时汽车下坡用了,回来时走平路用了,而回来时总共用了.则学校到自然保护区的距离为。【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间回来时走平路用的时间+回来时爬坡用的时间=回来时用的总时间【列出方程组】注:单人双

6、程的行程问题抓住来时的路程=回时的路程、路程=速度×时间,再把单人单程的行程问题练练熟就ok了,题型跟单人单程的题型差不多,把上面的例题弄懂,这里就不多做练习了。3.双人行程:(Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。1)同时同地同向而行:A,B两事物同时同地沿同一个方向行驶例:甲车的速度为,乙车的速度为,两车同时同地出发,同向而行。经过多少时间两车相距。【分析】如果设经过后两车相距,则甲走的路程为,乙走的路程为,根据题意可画出如下示意图:80xkm乙甲60xkm280km【等量关系式】甲车行驶的距离+28

7、0=乙车行驶的距离【列出方程】2)同时同地背向而行:A,B两事物同时同地沿相反方向行驶例:甲车的速度为,乙车的速度为,两车同时同地出发,背向而行。经过多少时间两车相距。【分析】如果设经过后两车相距,则甲走的路程为,乙走的路程为,根据题意可画出如下示意图:甲乙60xkm80xkm280km【等量关系式】甲车行驶的距离+乙车行驶的距离=280【列出方程】3)同时相向而行(相遇问题):例:甲,乙两人在相距的A,B两地相向而行,乙的速度是甲的速度的2倍,两人同时处发后相遇,求甲,乙两人的速度。【分析】如果设甲的速度为,则乙的速度为,甲走过

8、的路程为,乙走过的路程为,根据题意可画出如下示意图:甲1.5xkm1.5×2xkm乙AB10km280km【等量关系式】甲车行驶的距离+乙车行驶的距离=10【列出方程】4)追及问题:例:一对学生从学校步行去博物馆,他们以的速度行进后,一名教师骑自行

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。