欢迎来到天天文库
浏览记录
ID:31883654
大小:150.97 KB
页数:9页
时间:2019-01-24
《2016年福建省厦门六中高二理科上学期数学期中考试试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2016年福建省厦门六中高二理科上学期数学期中考试试卷一、选择题(共12小题;共60分)1.已知数列an满足:a1<0,an+1an=13,则数列an是 A.递增数列B.递减数列C.摆动数列D.不确定2.不等式x+53−2x≤6的解集是 A.xx≤−1或x≥92B.x−1≤x≤92C.xx≤−92或x≥1D.x−92≤x≤−13.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为 A.直角三角形B.锐角三角形C.钝角三角形D.不确定4.对于实数a,b,c,下列结论中正确的是 A.若a>b,则ac2>bc2B.若a
2、>b>0,则1a>1bC.若ab,1a>1b,则ab<05.在等差数列an中,a1+a4+a7=45,a2+a5+a8=29,则a3+a6+a9= A.22B.20C.18D.136.在△ABC中,若a=7,b=3,c=8,则其面积等于 A.12B.212C.28D.637.在2015年年底,某家庭打算把10万元定期存入银行后,既不加进存款也不取钱,每年到期利息连同本金自动转存,定期存款期限为10年.如果不考虑利息税,且中国银行人民币定期存款的年利率为5%,则到期时的存款本息和是 A.10×1.0510B.10×1.059C.200×1.0
3、59−1D.200×1.0510−18.在△ABC中,分别根据下列条件解三角形,其中有两解的是 A.a=7,b=14,A=30∘B.b=4,c=5,B=30∘C.b=25,c=3,C=150∘D.a=6,b=3,B=60∘9.函数fx=ax−1+3a>0,且a≠1的图象过一个定点P,且点P在直线mx+ny−1=0m>0,n>0上,则1m+4n的最小值是 A.12B.13C.24D.2510.已知等差数列an的前n项和为Sn,公差为d,若S20162016−S1616=100,则d的值为 A.120B.110C.10D.2011.已知x,y满足约束条件x−y≥0,x+y≤2
4、,y≥0,若z=ax+y的最大值为4,则a= 第9页(共9页)A.3B.2C.−2D.−312.已知t=−u2+7u−7u−1u>1,且关于t的不等式t2−8t+m+18<0有解,则实数m的取值范围是 A.−∞,−3B.−3,+∞C.3,+∞D.−∞,3二、填空题(共4小题;共20分)13.各项均为正数的等比数列an中,a2,12a3,a1成等差数列,则a4+a5a3+a4的值为 .14.已知关于x的不等式a2−4x2+a+2x−1≥0的解集是空集,求实数a的取值范围 .15.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷水的高度,某人在喷水柱正西方向的点A测的水柱
5、顶端的仰角为45∘,沿点A向北偏东30∘前进100 m到达点B.在B点测得水柱顶端的仰角为30∘,则水柱的高度是 .16.已知数列an是各项均为正整数的等差数列,公差d∈N*,且an中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为 ;(2)若a1=2mm∈N*,则d的所有可能取值的和为 .三、解答题(共6小题;共78分)17.在△ABC中,∠B=45∘,AC=10,cosC=255.(1)求BC的长;(2)若点D是AB的中点,求中线CD的长度.18.各项均为正数的等差数列an的前n项和为Sn,首项a1=3,数列bn为等比数列,首项b1=1,且b2S2=64,
6、b3S3=960.(1)求an和bn;(2)设fn=an−1Sn+100n∈N*,求fn最大值及相应的n的值.19.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2b−ccosA−acosC=0.(1)求角A的大小;(2)若a=4,求△ABC周长的取值范围.20.某企业生产A,B两种产品,生产每一吨产品所需的劳动力、煤和电耗如表:产品品种劳动力个煤吨电千瓦A产品394B产品1045已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润
7、?21.设数列an的前n项和为Sn.已知2Sn=3n+3.(1)求an的通项公式;(2)若数列bn满足anbn=log3an,求bn的前n项和Tn.第9页(共9页)22.已知数列an中,a1=3,a2=5,其前n项和为Sn满足Sn+Sn−2=2Sn−1+2n−1n≥3,n∈N*.(1)试求数列an的通项公式;(2)令bn=2n−1an⋅an+1,Tn是数列bn的前n项和.证明:对任意给定的m∈0,16,均存在n0∈N*,使得当n≥n0时,Tn>m恒成立.第9页(共9页)答案第一部分1.A2.
此文档下载收益归作者所有