欢迎来到天天文库
浏览记录
ID:31843005
大小:109.00 KB
页数:3页
时间:2019-01-21
《课题 :22.2.4一元二次方程的解法(4).doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、课题:22.2.4一元二次方程的解法(四)【教学目标】:1、使学生熟练地应用求根公式解一元二次方程。2、使学生经历探索求根公式的过程,培养学生抽象思维能力。3、在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点。【重点难点】:1、难点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程;2、重点:对文字系数二次三项式进行配方;求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误。【教学过程】:一、复习旧知,提出问题1、用配方法解下列方程:(1)(2)2、用配方解一元二次方程的步骤是什么?3、用直接开
2、平方法和配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、探索同底数幂除法法则问题1:能否用配方法把一般形式的一元二次方程转化为呢?教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识:因为,方程两边都除以,得移项,得配方,得即问题2:当,且时,大于等于零吗?让学生思考、分析,发表意见,得出结论:当时,因为,所以,从而。问题3:在研究问题1和问题2中,你能得出什么结论?让学生讨论、交流,从中得出结论,当时,一般形式的一元二次方程的根为,即。由以上研究的结果,得到了一元二次方程的求
3、根公式:()这个公式说明方程的根是由方程的系数、、所确定的,利用这个公式,我们可以由一元二次方程中系数、、的值,直接求得方程的解,这种解方程的方法叫做公式法。思考:当时,方程有实数根吗?三、例题例1、解下列方程:1、;2、;3、;4、教学要点:(1)对于方程(2)和(4),首先要把方程化为一般形式;(2)强调确定、、值时,不要把它们的符号弄错;(3)先计算的值,再代入公式。例2、(补充)解方程解:这里,,,因为负数不能开平方,所以原方程无实数根。让学生反思以上解题过程,归纳得出:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数
4、根。四、课堂练习1、P35练习。2、阅读P39“阅读材料”。五、小结根据你学习的体会,小结一下解一元二次方程一般有哪几种方法?通常你是如何选择的?和同学交流一下。六、作业P38习题4.(3)、(4)、(5)、(6)、(7)、(8),5。
此文档下载收益归作者所有