资源描述:
《高考专题立体几何中的最值问题-精品之高中数学(理)---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第67题 立体几何中的最值问题I.题源探究·黄金母题【例1】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】如下图,设正三角形的边长为x,则.,三棱锥的体积.令,则,令,,,.【名师点睛】对于三棱锥最
2、值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.II.考场精彩·真题回放【例2】【2015新课标2理9】已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.B.C.D.【答案】C【解析】分析:设球的半径为R,则△AOB面积为,三棱锥体积最大时,C到平面AOB距离最大且为R,此时,所以球O的表面积.故选C.【方法点睛】由于三棱锥底面AOB
3、面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练.【例3】【2016高考浙江】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△,直线AC与所成角的余弦的最大值是______.【答案】【解析】分析:设直线与所成角为.设是中点,由已知得,如图,以为轴,为轴,过与平面垂直的直线为轴,建立空间直角坐标系,由,,,作于,翻折过
4、程中,始终与垂直,,则,,因此可设,则,与平行的单位向量为,所以=,所以时,取最大值.【点睛】先建立空间直角坐标系,再计算与平行的单位向量和,进而可得直线与所成角的余弦值,最后利用三角函数的性质可得直线与所成角的余弦值的最大值.【例4】【2014课标Ⅰ理12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()(A)(B)(C)(D)【答案】B【解析】由正视图、侧视图、俯视图形状,可判断该几何体为四面体,且四面体的长、宽、高均为4个单位,故可考虑置于棱长为4个单位的正方
5、体中研究,如图所示,该四面体为,且,,,,故最长的棱长为6,选B.【名师点睛】本题考查了三视图视角下多面体棱长的最值问题,考查了考生的识图能力以及由三视图还原物体的空间想象能力。【例5】【2014湖南理7】一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【例6】【201
6、6高考新课标Ⅲ理数】在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A)4π(B)(C)6π(D)【答案】B【解析】分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.【名师点睛】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.【例7】【2016高考浙江理数】如图,在△AB
7、C中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.过作直线的垂线,垂足为.设则,即,解得.而的面积.设与平面所成角为,则点到平面的距离.故四面体的体积.设,因为,所以.则.(1)当时,有,故.此时,.,因为,所以,函数在上单调递减,故.(2)当时,有,故.此时,.由(1)可知,函数在单调递减,故.综上,四面体的体
8、积的最大值为.【例8】【2015高考福建理18】如图,是圆的直径,点是圆上异于的点,垂直于圆所在的平面,且.(Ⅰ)若为线段的中点,求证平面;(Ⅱ)求三棱锥体积的最大值;(Ⅲ)若,点在线段上,求的最小值.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【解析】解法一:(I)在中,因为,为的中点,所以