14.3.2 一次函数与一元一次不等式.doc

14.3.2 一次函数与一元一次不等式.doc

ID:31727484

大小:88.50 KB

页数:3页

时间:2019-01-17

14.3.2 一次函数与一元一次不等式.doc_第1页
14.3.2 一次函数与一元一次不等式.doc_第2页
14.3.2 一次函数与一元一次不等式.doc_第3页
资源描述:

《14.3.2 一次函数与一元一次不等式.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、14.3.2一次函数与一元一次不等式第九课时教学目标(一)教学知识点1.认识一元一次不等式与一次函数问题的转化关系.毛2.学会用图象法求解不等式.3.进一步理解数形结合思想.(二)能力训练要求1.培养提高从不同方向思考问题的能力.2.探究解题思路,以便灵活运用知识.3.提高问题间互相转化的技能.(三)情感与价值观要求1.积极参与活动,培养学习兴趣.2.形成合作交流的意识及独立思考的习惯.教学重点1.理解一元一次不等式与一次函数的转化关系及本质联系.2.掌握用图象求解不等式的方法.教学难点图象法求解不等式中自变量取值范围的确定.教学

2、方法思考─交流,归纳─总结.教具准备多媒体演示.教学过程Ⅰ.提出问题,创设情境[师]我们来看下面两个问题有什么关系?1.解不等式5x+6>3x+10.2.当自变量x为何值时函数y=2x-4的值大于0?在问题1中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2.解问题2就是要解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0.因此这两个问题实际上是同一个问题.那么,是不是所有的一元一次不等式都可转化为一次函数的相关问

3、题呢?它在函数图象上的表现是什么?如何通过函数图象来求解一元一次不等式?以上这些问题,我们本节将要学到.Ⅱ.导入新课第3页共3页[师]我们先观察函数y=2x-4的图象.可以看出:当x>2时,直线y=2x-4上的点全在x轴上方,即这时y=2x-4>0.由此可知,通过函数图象也可求得不等式的解为x>2.由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.由于任何一元一次不等式都可以转化

4、的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.[活动一]活动内容设计:用画函数图象的方法解不等式5x+4<2x+10.活动设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.学生活动:在教师

5、指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:方法一:原不等式可以化为3x-6<0,画出直线y=3x-6的图象,可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=3x-6<0,所以不等式的解集为:x<2.第3页共3页方法二:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10可以看出,它们交点的横坐标为2.当x>2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上的相应点的下方,这时5x+

6、4<2x+10,所以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。