欢迎来到天天文库
浏览记录
ID:31585098
大小:2.12 MB
页数:10页
时间:2019-01-14
《初二数学 勾股定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、学科教师辅导教案教案编号:学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课类型C-勾股定理的证明C-勾股定理及其逆定理C-勾股定理的应用星级★★★★★★★★★教学目标掌握勾股定理的推导及证明方法会利用勾股定理及其逆定理解答题目勾股定理在实际生活中的应用授课日期及时段教学内容C-勾股定理的推导勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a、b和c分别表示直角三角形的两直角边和斜边,则有a2+b2=c2.【证法1】(重点) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,
2、把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即,整理得.【证法2】(邹元治证明)(重点)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.∵∠AEH+∠AHE=90º,∴∠AEH+∠BEF=90º.∴∠HEF=180º-90º=90º.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵RtΔGDH≌RtΔH
3、AE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90º,∴∠EHA+∠GHD=90º.又∵∠GHE=90º,∴∠DHA=90º+90º=180º.∴ABCD是一个边长为a+b的正方形,它的面积等于.∴.∴【证法3】(赵爽证明)(重点)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状.∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90º,∴∠EAB+∠HAD=90º,∴ABCD是一个边长为c的正方形,它的面积等于c2.∵EF=FG=GH=HE=b-a,∠HEF=
4、90º.∴EFGH是一个边长为b-a的正方形,它的面积等于.∴.∴.【证法4】(1876年美国总统Garfield证明)(重点)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90º,∴∠AED+∠BEC=90º.∴∠DEC=180º-90º=90º.∴ΔDEC是一个等腰直角三角形,它的面积等于.又∵∠DAE=90º,∠EBC=90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于.∴.∴
5、.【练习1】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180º-90º=90º.又∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形.∴∠ABC+∠CBE=90º.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90º.即∠CBD=90º.又∵∠BD
6、E=90º,∠BCP=90º,BC=BD=a.∴BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,∴. 【练习2】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90º,QP∥BC,∴∠MPC=90º,∵BM⊥PQ,∴∠BMP=90º,∴BCPM是一个矩形,即∠MBC=90º.
7、∵∠QBM+∠MBA=∠QBA=90º,∠ABC+∠MBA=∠MBC=90º,∴∠QBM=∠ABC,又∵∠BMP=90º,∠BCA=90º,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.从而将问题转化为【练习1】(梅文鼎证明).主要介绍了勾股定理的证明方法,引导学生充满对科学理论进行探索的好奇心C-勾股定理的逆定理1、勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a、b和c分别表示直角三角形的两直角边和斜边,则有a2+b2=c2.2、勾股定理的逆定理(直角三角形的一个判定):如果三角形的三边长、、满足,那么这个三角形
8、是直角三角
此文档下载收益归作者所有