让几何直观促进学生的数学思考

让几何直观促进学生的数学思考

ID:31499909

大小:111.00 KB

页数:9页

时间:2019-01-12

让几何直观促进学生的数学思考_第1页
让几何直观促进学生的数学思考_第2页
让几何直观促进学生的数学思考_第3页
让几何直观促进学生的数学思考_第4页
让几何直观促进学生的数学思考_第5页
资源描述:

《让几何直观促进学生的数学思考》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、让几何直观促进学生的数学思考  【摘要】几何直观具有形象具体、简单抽象的双重特点,将抽象的数学语言与直观的图形有机结合,有助于学生理解数学知识的本质,促进学生的数学思考。要真正发挥几何直观对数学学习的促进作用,在日常教学中要注重培养学生的几何直观意识,循序渐进地培养学生画图表征问题的能力,注重培养学生借助图形思考问题的能力,让画图思考、读图分析成为学生的自觉行为。  【关键词】几何直观;学生;数学思考  【作者简介】严育洪,江苏省特级教师,江苏省教育厅小学数学学科领军人物,江苏省“333高层次人才培养工程”学术技术带头人,无锡市有突出贡献中青年专家,无锡市教育专家委员会委员,无锡市锡

2、山教师进修学校培训部副主任。曾发表多篇教育论文,出版多本教育专著,其专著入选教育部基础教育课程教材发展中心中小学图书馆(室)推荐书目,并被评为年度无锡市第十届哲学社会科学优秀成果,并被引出到马来西亚出版发行。曾参加“国标本”苏教版小学数学教材编写,近百次赴全国各地讲学;杨佳玲,江苏省常熟市张桥中心小学数学教师,曾获常熟市把握学科能力竞赛一等奖,辅导学生撰写的多篇数学小论文分别获市一、二等奖。主要研究方向:中年级数学教学。  几何直观是《义务教育数学课程标准(2011版)》(以下简称“课标”)提出的十大核心概念之一。“课标”指出:“9几何直观主要是指利用图形描述和分析问题。借助几何直观

3、可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”据此,我们不难发现,几何直观不仅指直接观察,更重要的是依托图形进行深入思考与分析,打开思维,找到方法,解决实际问题。  阿蒂亚说过:“几何直观是领悟数学最有效的渠道。”数学知识的抽象表达,学生理解起来有难度,要把握其本质更是难上加难。借助几何直观,将抽象的数学语言与直观的图形巧妙对接,有助于学生直观地理解数学,把握数学知识本质,促进学生的数学思考,找出解决问题的思维突破口。  在整个基础教育阶段数学学习过程中,几何直观发挥着重要作用。教师

4、应有意识地培养学生的几何直观能力,让几何直观成为一种意识、能力、思维方式。根据平时教学实践,笔者认为,要实现让几何直观促进学生的数学思考的目标,可以从以下三方面着手。  一、注重培养学生的几何直观意识  意识的培养取决于价值的认同,因此,几何直观意识培养的首要任务就是教师在日常教学中要积极引导,让学生充分体验几何直观的作用和价值。  1.沟通数学知识与几何图形的联系,在知识学习中体会价值。  小学生的思维以形象思维为主,在他们的眼中,抽象、严谨、概括的数学知识可能是枯燥而难懂的。借助几何直观,可以将抽象的概念、算理、法则等变得形象而生动,这不仅能降低学生理解数学知识的难度,而且有助于

5、学生把握数学知识的本质。9  【案例1】苏教版教材三年级上册《倍的认识》一课中,教师让学生用黑白圆片代替物品创造一幅“2倍”关系图。学生作品纷呈,展示出了3的2倍、5的2倍、10的2倍……教师提问:“像这样表示‘2倍’的关系图,可以画出多少呢?”学生回答:“很多很多,无数。”教师追问:“能不能想个办法把这么多的图用一个图表示出来呢?”有学生指出,可以用线段图表示,接着在师生对话中完成了线段图(如图1)。教师又问:“在这个框里可以填哪些数?”学生回答:“什么数都可以。”    在教学本环节之前,学生从大量的例证中感知了“倍”的概念本质。让学生利用黑白圆片创造“2倍”关系图,一方面,可加

6、深学生对概念的理解;另一方面,在此基础上,借助线段图表征概念,摒弃了所有非本质属性,有助于促进学生对概念的准确理解,提升了学生对“倍”的认识。  几何直观不仅是沟通学生形象思维与抽象数学概念的桥梁,也是学生发现算法、理解算理的突破口。小学数学计算教学常常借助几何直观进行,以图为载体,可以将算理有形地显示出来,有利于学生感知与理解算理。  【案例2】苏教版教材三年级上册《同分母分数的加法和减法》一课中,教师先让学生根据例题列出算式(如图2),再引导让学生借助长方形涂一涂、想一想、算一算。根据提示,学生纷纷将长方形的涂上红色,长方形的涂上绿色(如图2)。在学生独立思考、组内讨论有结果后,

7、教师提问:“你的计算结果是多少?”学生说是。教师追问:“你是怎么想的?”有学生说:“看出来的,图上一共涂了。”有学生说:“红色部分有5个,绿色部分有2个5+2=7,一共7个。”结合图示,教师指出:9表示5个表示2个,一共涂了7个。  教师接着引导学生观察得数的分子和分母与两个加数的分子和分母各有什么关系,学生一下子就发现了同分母分数的加法的算法,即分母不变,分子相加。  虽然教材没有给出计算法则,但借助直观图形,教师适时引导点拨,学生就能自己总结算法、理解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。