欢迎来到天天文库
浏览记录
ID:31232653
大小:162.00 KB
页数:9页
时间:2019-01-07
《高考数学大一轮复习第十四章14_2不等式选讲第2课时不等式的证明试题理北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。第2课时 不等式的证明1.不等式证明的方法(1)比较法:①求差比较法:知道a>b⇔a-b>0,ab,只要证明a-b>0即可,这种方法称为求差比较法.②求商比较法:由a>b>0⇔>1且a>0,b>0,因此当a>0,b>0时,要证明a>b,只要证明>1即可,这种方法称为求商比较法.(2)分析法:从所要证明的结论入手向已知条件反推直至达到已知条件为止.这种证法称为分析法,
2、即“执果索因”的证明方法.(3)综合法:从已知条件出发,利用不等式的性质(或已知证明过的不等式),推出了所要证明的结论,即“由因寻果”的方法.这种证明不等式的方法称为综合法.(4)放缩法和反证法:在证明不等式时,有时可以通过缩小(或放大)分式的分母(或分子),或通过放大(或缩小)被减式(或减式)来证明不等式,这种证明不等式的方法称为放缩法.反证法是常用的证明方法.它是通过证明命题结论的否定不能成立,来肯定命题结论一定成立.其证明的步骤是:①作出否定结论的假设;②进行推理,导出矛盾;③否定假设,肯定结论.(5)数学归纳法:数学归纳法可
3、以用于证明与正整数有关的命题.证明需要经过两个步骤:①验证当n取第一个值n0(如n0=1或2等)时命题正确.②假设当n=k时(k∈N+,k≥n0)命题正确,证明当n=k+1时命题也正确.在完成了上述两个步骤之后,就可以断定命题对于从n0开始的所有正整数都正确.2.几个常用基本不等式(1)柯西不等式:对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分
4、管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。①柯西不等式的代数形式:对任意实数a,b,c,d,有(a2+b2)(c2+d2)≥(ac+bd)2(当向量(a,d)与向量(c,d)共线时,等号成立).②柯西不等式的向量形式:设α,β是两个向量,则
5、α
6、
7、β
8、≥
9、α·β
10、,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.③设a1,a2,…,an与b1,b2,…,bn是两组实数,则有(a+a+…+a)(b+b+…+b)≥(a1b1+a2b2+…+anbn)2,当向量(a1,a2,…
11、,an)与向量(b1,b2,…,bn)共线时,等号成立.(2)算术—几何平均不等式若a1,a2,…,an为正数,则≥,当且仅当a1=a2=…=an时,等号成立.1.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,求的最小值.解 根据柯西不等式(ma+nb)2≤(a2+b2)(m2+n2),得25≤5(m2+n2),m2+n2≥5,的最小值为.2.若a,b,c∈(0,+∞),且a+b+c=1,求++的最大值.解 (++)2=(1×+1×+1×)2≤(12+12+12)(a+b+c)=3.当且仅当a=b=c=时,等号成立.∴(+
12、+)2≤3.故++的最大值为.3.设x>0,y>0,若不等式++≥0恒成立,求实数λ的最小值.解 ∵x>0,y>0,∴原不等式可化为-λ≤(+)(x+y)=2++.∵2++≥2+2=4,当且仅当x=y时等号成立.∴min=4,即-λ≤4,λ≥-4.对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际
13、督导、检查的少,指导、推进、检查还不到位。题型一 用综合法与分析法证明不等式例1 (1)已知x,y均为正数,且x>y,求证:2x+≥2y+3;(2)设a,b,c>0且ab+bc+ca=1,求证:a+b+c≥.证明 (1)因为x>0,y>0,x-y>0,2x+-2y=2(x-y)+=(x-y)+(x-y)+≥3=3,所以2x+≥2y+3.(2)因为a,b,c>0,所以要证a+b+c≥,只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故需证明:a2+b2+c2+2(ab+bc+c
14、a)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而ab+bc+ca≤++=a2+b2+c2(当且仅当a=b=c时等号成立)成立.所以原不等式成立.思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是
此文档下载收益归作者所有