欢迎来到天天文库
浏览记录
ID:31081091
大小:447.50 KB
页数:13页
时间:2019-01-06
《高考数学二轮专题复习与策略 第1部分 专题2 数列 突破点4 等差数列等比数列教师用书 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。专题二 数 列建知识网络 明内在联系[高考点拨] 数列专题是高考的必考专题之一,主要考查等差、等比数列的基本量运算及数列求和的能力,该部分即可单独命题,又可与其他专题综合命题,考查方式灵活多样,结合近几年高考命题研究,为此本专题我们按照“等差、等比数列”和“数列求和”两条主线展开分析和预测.突破点4 等差数列、等比数列(对应学生用书第167页)提炼1等差数列、等比数列的运算(1)通项公式等差数列:an=a
2、1+(n-1)d;等比数列:an=a1·qn-1.(2)求和公式等差数列:Sn==na1+d;等比数列:Sn==(q≠1).(3)性质若m+n=p+q,通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。在等差数列中am+an=ap+aq;在等比数列中am·an=ap·aq
3、.提炼2等差数列、等比数列的判定与证明数列{an}是等差数列或等比数列的证明方法:(1)证明数列{an}是等差数列的两种基本方法①利用定义,证明an+1-an(n∈N*)为同一常数;②利用中项性质,即证明2an=an-1+an+1(n≥2).(2)证明{an}是等比数列的两种基本方法①利用定义,证明(n∈N*)为同一常数;②利用等比中项,即证明a=an-1an+1(n≥2).提炼3数列中项的最值的求法(1)根据数列与函数之间的对应关系,构造相应的函数f(n)=an,利用求解函数最值的方法(多利用函数的单调性)进行求解,但要注意自变量的取值必须是正整数的限制.(2)利用数列的单调性求解,
4、利用不等式an+1≥an(或an+1≤an)求解出n的取值范围,从而确定数列单调性的变化,进而确定相应的最值.(3)转化为关于n的不等式组求解,若求数列{an}的最大项,则可解不等式组若求数列{an}的最小项,则可解不等式组求出n的取值范围之后,再确定取得最值的项.回访1 等差数列基本量的运算1.(2016·全国乙卷)已知等差数列{an}前9项的和为27,a10=8,则a100=( )A.100 B.99 C.98 D.97C [法一:∵{an}是等差数列,设其公差为d,∴S9=(a1+a9)=9a5=27,∴a5=3.又∵a10=8,∴∴∴a100=a1+99d=-1+
5、99×1=98.故选C.法二:∵{an}是等差数列,∴S9=(a1+a9)=9a5=27,∴a5=3.在等差数列{an}中,a5,a10,a15,…,a100成等差数列,且公差d′=a10-a5=8-3=5.通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。故a100=a
6、5+(20-1)×5=98.故选C.]2.(2015·全国卷Ⅱ)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.11A [法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5==5a3=5,故选A.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d=1,∴S5=5a1+d=5(a1+2d)=5,故选A.]回访2 等比数列基本量的运算3.(2015·全国卷Ⅱ)已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D
7、.84B [∵a1=3,a1+a3+a5=21,∴3+3q2+3q4=21,∴1+q2+q4=7,解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.]4.(2016·全国乙卷)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为________.64 [设等比数列{an}的公比为q,则由a1+a3=10,a2+a4=q(a1+a3)=5,知q=.又a1+a1q2
此文档下载收益归作者所有