欢迎来到天天文库
浏览记录
ID:31054721
大小:1.07 MB
页数:9页
时间:2019-01-06
《高三数学上学期第三次检测试题 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。山东省潍坊实验中学2017届高三数学上学期第三次检测试题文本试卷共4页,分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选
2、择题(本题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集集合则()A.B.C.D.2.设,且,则( )A.B.C.D.3.已知,则()A.B.C.D.4.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分散直方图,其中产品净重的范围是,样本数据分组为.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于102克的产品的个数是A.90B.75C.60D.455.已知函数,则的值是()A.9B.C.-9D.-通过党课、报告会、学习讨论会等
3、多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。6.下列命题中是真命题的个数是()①命题p:“”,则p是真命题②命题,则命题;③,函数都不是偶函数④,函数与的图像有三个交点A.1B.2C.3D.47.已知a、b为空间中不同的直线,a、b、g为不同的平面,下列命题中正确
4、的是()A.若a∥a,a⊥b,则b⊥a;B.a∥b,a⊥g,则b⊥g;C.若a∥b,b∥b,a,bÌa,则a∥bD.a⊥b,a⊥b,则a∥a8.已知变量满足约束条件,则的最大值为()A.B.C.D.9.函数的图象大致是10.函数对任意的图象关于点对称,则()A.B.C.D.通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精
5、心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。第Ⅱ卷(非选择题共100分)注意事项:1.将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题纸的相应位置上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分。11.等比数列中,已知,则的值为.12.一个四面体的三视图如图所示,则该四面体的表面积是。13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知的面积为__________.14.若直线平分圆,则的最小值是.15.已知F是双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到
6、C的一条渐近线的距离为.三、解答题:本大题共6小题,共75分。解答应写出文字说明,证明过程或演算步骤。16.某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这16人的数学成绩编成茎叶图,如图所示.(I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为122分,试推算这个污损的数据是多少?(II)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻
7、新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。17.已知向量=(a,b),=(sin2x,2cos2x),若f(x)=.,且⑴求的值;⑵求函数在的最值及取得最值时的的集合;18.如图,矩形中,分别在线段上,,将矩形沿折起,记折起后的矩形为,且平面.⑴求证:;⑵若,求证:;19.设数列的前项和为,且。数列满足⑴求数列的通项公式
8、;⑵证明:数列为等差数列,并求的前n项和Tn;20.已知函数.(1)若在定义域上
此文档下载收益归作者所有