欢迎来到天天文库
浏览记录
ID:30976950
大小:15.06 MB
页数:43页
时间:2019-01-05
《高考数学二轮复习上篇专题整合突破专题七附加题必做部分第1讲立体几何中的向量方法课件理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1讲 立体几何中的向量方法高考定位高考对本内容的考查主要有:(1)空间向量的坐标表示及坐标运算,属B级要求;(2)线线、线面、面面平行关系判定,属B级要求;(3)线线、线面、面面垂直的判定,属B级要求;(4)求异面直线、直线与平面、平面与平面所成角,属B级要求.真题感悟考点整合1.直线与平面、平面与平面的平行与垂直的向量方法设直线l的方向向量为a=(a1,b1,c1),平面α,β的法向量分别为μ=(a2,b2,c2),ν=(a3,b3,c3),则(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a2+b1b2+c1c
2、2=0.(2)线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka2,b1=kb2,c1=kc2.(3)面面平行α∥β⇔μ∥ν⇔μ=λν⇔a2=λa3,b2=λb3,c2=λc3.(4)面面垂直α⊥β⇔μ⊥ν⇔μ·ν=0⇔a2a3+b2b3+c2c3=0.2.直线与直线、直线与平面、平面与平面的夹角计算探究提高解决本类问题的关键步骤是建立恰当的坐标系,用坐标表示向量或用基底表示向量,证法的核心是利用向量的数量积或数乘运算.探究提高利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二
3、,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.探究提高利用法向量的根据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在能断定所求二面角的平面角是锐角、直角或钝角的情况下,这种方法具有一定的优势,但要注意,必须能断定“所求二面角的平面角是锐角、直角或钝角”,在用法向量法求二面角的大小时,务必要作出这个判断,否则解法是不严谨的.3.利用空间向量求解二面角时,易忽视二面角的范围,误以为两个法向量的夹角就是所求的二面角,导致出错.4.空间向量在处理空间问
4、题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特征,进而建立空间直角坐标系,通过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的准确性.
此文档下载收益归作者所有