欢迎来到天天文库
浏览记录
ID:30915572
大小:350.50 KB
页数:9页
时间:2019-01-04
《高中数学 第1章 导数及其应用 1_3_1 单调性学案 苏教版选修2-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线1.3.1 单调性1.利用导数研究函数的单调性.(重点)2.含有字母参数的函数单调性的讨论,单调区间的求解.(难点)3.由单调性求参数的取值范围.(易错点)[基础·初探]教材整理 函数的单调性与其导数的关系阅读教材P28“例1”以上部分,完成下列问题.1.函数的单调性与其导数的关系(1)一般地,在某区间上函数y=f(x)的单调性与导数有如下关系:导数函数的单调性f′(x)>0f(x)为该区间上的增函数f′(x)<0f(x)
2、为该区间上的减函数(2)如果在区间(a,b)内恒有f′(x)=0,则y=f(x)在这个区间内是常数函数.2.导数与函数图象间的关系(1)导函数图象在x轴上方的区间为原函数的单调增区间,导函数图象在x轴下方的区间为原函数的单调减区间.(2)一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”;反之,函数的图象就“平缓”一些.1.判断正误:(1)若函数f(x)在(a,b)上是增函数,则对任意x∈(a,b),都有f′(x)>0.( )(2)函数f(x)=在其定义域上是单调减函数.( )(3)函数f(
3、x)=x3-2x在(1,+∞)上单调递增.( )(4)若存在x∈(a,b)有f′(x)=0成立,则函数f(x)为常数函数.( )【答案】 (1)× (2)× (3)√ (4)×2.函数f(x)=(x-3)ex的单调递增区间是________.政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线【解析】 f′(x)=(x-
4、3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)>0,解得x>2.【答案】 (2,+∞)[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________
5、________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型]判断(证明)函数的单调性 (1)求证:函数f(x)=ex-x-1在(0,+∞)内是增函数,在(-∞,0)内是减函数.(2)判断函数f(x)=在区间(0,2)上的单调性.【精彩点拨】 求出导数f′(x),然后判断导数的符号即可.【自主解答】 (1)证明:由于f(x)=ex-x-1,所以f′(x)=ex-1,当x∈(0,+∞)时,
6、ex>1,即f′(x)=ex-1>0.故函数f(x)在(0,+∞)内为增函数,当x∈(-∞,0)时,ex<1,即f′(x)=ex-1<0.故函数f(x)在(-∞,0)内为减函数.(2)由于f(x)=,所以f′(x)==.由于00.政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线故f
7、′(x)=>0.∴函数f(x)在区间(0,2)上是单调递增函数.1.利用导数证明函数f(x)在给定区间上的单调性,实质上就是证明f′(x)>0(或f′(x)<0)在给定区间上恒成立.2.利用导数判断可导函数f(x)在(a,b)内的单调性,步骤是:(1)求f′(x);(2)确定f′(x)在(a,b)内的符号;(3)得出结论.[再练一题]1.证明:函数y=lnx+x在其定义域内为增函数.【证明】 显然函数的定义域为{x
8、x>0},又f′(x)=(lnx+x)′=+1,当x>0时,f′(x)>1>0,故y=lnx+x在其定义域内为增函数.求函数的单调区间 求下
9、列函数的单调区间:(1)f(x)=x2-lnx;(2)f(x)=;(3)f(x)
此文档下载收益归作者所有