欢迎来到天天文库
浏览记录
ID:30892650
大小:35.00 KB
页数:4页
时间:2019-01-04
《高中数学第一章集合与函数概念1.3.1函数的单调性与最大小学案新人教a版必修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3.1函数的单调性与最大(小)一、【学习目标】(自学引导:这节课我们主要任务就是通过对单调性的研究,然后会运用函数单调性解决题目.这节课的特点是符号较多,希望同学们课下做好预习.)1、理解函数单调性的本质内容和函数单调性的几何意义;2、掌握判断函数单调性的判断方法:定义法和图象法;3、熟练的掌握用定义法证明函数单调性及其步骤.课前引导:函数图象上任意点P(x,y)的坐标有什么意义?二、【自学内容和要求及自学过程】观察教材第27页图1.3-2,阅读教材第27-28页“思考”上面的文字,回答下列问题(自学
2、引导:理解“上升”、“下降”的本质内涵,归纳出增函数的定义)<1>你能描述上面函数的图像特征吗?该怎样理解“上升”、“下降”的含义?<2>对于二次函数y=x2,列出表(1),完成表(1)并体会图象在y轴右侧上升;x…-3-2-101234…f(x)=x2……结论:<1>函数y=x的图象,从左向右看是___(上升、下降)的;函数y=x2的图象在y轴左侧是___的,在y轴右侧是___的;函数y=-x2的图象在y轴左侧是___的,在y轴右侧是___的;按从左向右的方向看函数的图象,意味着图象上点的横坐标逐渐增大
3、即函数的自变量逐渐增大;图象是上升的意味着图象上点的___(横、纵)坐标逐渐变大,也就是对应的函数值随着逐渐增大.也就是说从左向右看图象上升,反映了函数值随着自变量的增大而___;“下降”亦然;<2>在区间(0,+∞)上,任取x1、x2,且x1),也就是有f(x1)___f(x2).这样可以体会用数学符号刻画图象上升.阅读教材第28页“思考”下面的内容,然后回答下列问题(自学引导:同学们要理解增函数的定义,符号比较多,要一一的理解)<3>数学上规定:函数y=x2在区间(
4、0,+∞)上是增函数.请给出增函数定义.<4>增函数的定义中,把“当x1x2时,都有f(x1)>f(x2)”,这样行吗?增函数的定义中,“当x1增函数的几何意义是什么?结论:<3>一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当___时,都有___,那么就说函数f(x)在区间D上是增函数;<4>增函数的定义:由于当
5、x1x2时,都有f(x1)>f(x2)”都是相同的不等号“>”,即前面是“>”,后面也是“>”,步调一致.因此我们可以简称为:步调一致增函数;增函数反映了函数值随自变量的增大而增大;从左向右看,图象是上升的;<5>增函数几何意义是从左向右看,图象是___(上升、下降)的;(自学引导:类比增函数的定义,切实理解减函数的含义.)思考:<1>类比增函数的定义,请你给出减函数的定义;<2>函数
6、y=f(x)在区间D上具有单调性,说明了函数y=f(x)在区间D上的图象有什么变化趋势?结论:<1>一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当___时,都有___,那么就说函数f(x)在区间D上是减函数.简称为:步调不一致减函数.减函数的几何意义:从左向右看,图象是___的.函数值变化趋势:函数值随着自变量的增大而减小;<2>函数y=f(x)在区间D上,函数值的变化趋势是随自变量的增大而增大(减小),几何意义:从左向右看,图象是___(___)(上
7、升、下降)的;阅读教材第29页第一段,然后回答下列问题<7>你能理解“严格的单调性”所包含的含义吗?试述之.三、讲授新课1.引例:观察y=x2的图象,回答下列问题(投影1)问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么?随着x的增加,y值在增加。问题2:怎样用数学语言表示呢?设x1、x2∈[0,+∞],得y1=f(x1),y2=f(x2).当x18、分析y轴左侧部分)由此可有:2.定义:(投影2)一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1x2时都有f(x1)f(x2).那么就是f(x)在这个区间上是减函数(decreasingfuncti
8、分析y轴左侧部分)由此可有:2.定义:(投影2)一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1x2时都有f(x1)f(x2).那么就是f(x)在这个区间上是减函数(decreasingfuncti
此文档下载收益归作者所有