欢迎来到天天文库
浏览记录
ID:30000942
大小:469.56 KB
页数:5页
时间:2018-12-25
《高中数学 第一章 集合与函数概念 1.3.1 单调性与最大(小)值(1)学案新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§1.3.1单调性与最大(小)值(1)班级 姓名 座号【学习目标】1.通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2.能够熟练应用定义判断数在某区间上的单调性;3.学会运用函数图象理解和研究函数的性质.【自主学习】一、回顾:复习1:观察下列各个函数的图象.探讨下列变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大、最小值?③函数图象是否具有某种对称性?复习2:画出函数、的图象.小结:描点法的步骤为:列表→描点→连线二、课前预习:预习教材P30~P32,找出疑惑之处三、【课堂探究】单调性相关概念思考:根据、的图象进行讨论:
2、随x的增大,函数值怎样变化?当x>x时,f(x)与f(x)的大小关系怎样?问题:一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?新知:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x13、示单调增、单调减?②所有函数是不是都具有单调性?单调性与单调区间有什么关系?③函数的单调递增区间是,单调递减区间是.试试:如图,定义在[-5,5]上的f(x),根据图象说出单调区间及单调性.典型例题例1根据下列函数的图象,指出它们的单调区间及单调性,并运用定义进行证明.(1);(2).变式:指出、的单调性.例2物理学中的玻意耳定律(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.【当堂训练】1.函数的单调增区间是()A.B.C.RD.不存在2.如果函数在R上单调递减,则()A.B.C.D.3.在区间上为增4、函数的是()A.B.C.D.4.函数的单调性是.5.函数的单调递增区间是,单调递减区间是.【小结与反馈】①比较函数值的大小问题,运用比较法而变成判别代数式的符号;②证明函数单调性的步骤:第一步:设x、x∈给定区间,且x
3、示单调增、单调减?②所有函数是不是都具有单调性?单调性与单调区间有什么关系?③函数的单调递增区间是,单调递减区间是.试试:如图,定义在[-5,5]上的f(x),根据图象说出单调区间及单调性.典型例题例1根据下列函数的图象,指出它们的单调区间及单调性,并运用定义进行证明.(1);(2).变式:指出、的单调性.例2物理学中的玻意耳定律(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.【当堂训练】1.函数的单调增区间是()A.B.C.RD.不存在2.如果函数在R上单调递减,则()A.B.C.D.3.在区间上为增
4、函数的是()A.B.C.D.4.函数的单调性是.5.函数的单调递增区间是,单调递减区间是.【小结与反馈】①比较函数值的大小问题,运用比较法而变成判别代数式的符号;②证明函数单调性的步骤:第一步:设x、x∈给定区间,且x
此文档下载收益归作者所有