选修(1-1):导数的几何意义

选修(1-1):导数的几何意义

ID:30271112

大小:542.54 KB

页数:16页

时间:2018-12-28

选修(1-1):导数的几何意义_第1页
选修(1-1):导数的几何意义_第2页
选修(1-1):导数的几何意义_第3页
选修(1-1):导数的几何意义_第4页
选修(1-1):导数的几何意义_第5页
资源描述:

《选修(1-1):导数的几何意义》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、◆教案导数的几何意义教材:人教A版·普通高中课程标准实验教科书·数学·选修1-1【教学目标】知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。(2)借助两个类比的动画,从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。(3)依据割线与切线的变化联系,数形结合探究函数在处的导数的几何意义,使学生认识到导数就是函数的

2、图象在处的切线的斜率。即:=曲线在处切线的斜率在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。过程与方法目标:(1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。(2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。(3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立

3、解决问题和发现新知、应用新知。情感、态度、价值观:(1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。【教学重点与难点】重点:理解和掌握切线的新定

4、义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。难点:发现、理解及应用导数的几何意义。【教学方法】《新课程标准》的理念是“向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法”。考虑授课对象是高二年级文科生,数学的知识基础和数学思维能力的层次差异较大,所以本节课设计为分层探究、自主实践的活动课。分层教学体现在学生自选分层问题进行探索新知、尝试知识应用以及课上的分层训练,目的是使学生在原有的认知基础上都得到尽可能多的提高,以改善优生吃不饱,后进

5、生不消化的问题,从实处构建高效课堂。学生的课堂练习可以展现学生的思维,暴露学习中的不足。故在课堂争取更多的时间供学生进行定时不定量的分层训练,训练系统分三部分,即A、B、C三部分。教师指导学生根据个人知识掌握的程度,自由选择一组题目进行练习。每组题目都有基础题型以检测本节课的学习任务的完成情况,期望不同的学生在原有的基础上都能得到自身最大的发展。巧用信息技术,展示两个类比的动画,增强直观性,期望不同层次的学生,在探索的过程中都有感知和发现,同时增加课堂容量。【学法指导】通过设计环环相扣的思考问题,引导学生主动地参与探究活动,体验学习的

6、乐趣,教师在这个过程中不打断学生的思路,学生可以根据学案超前完成活动,期望有能力的学生走在老师的前面,同时,学生也可以根据需要寻求老师和同学的帮助,以更好地在课堂上完成学习任务。使学生充分经历“探索感知——讨论归纳——发现新知——应用新知解释现象”这一完整的探究活动,以获得理智和情感体验,让学生感受到数学知识的产生是水到渠成的。学生自主探索、动手实践、合作交流的学习方式,体现在整个教学过程中。【教学手段】(1)借助多媒体辅助教学,强化直观感知。(2)提供学案“学生活动”,突破理解难点。平均变化率瞬时变化率导数割线的斜率切线的斜率割线切

7、线逼近导数的几何意义函数的增减性应用数形结合类比【数学知识线索】数:形:【教学流程】复习旧知,自然引出研究问题题动画类比、知识迁移,获得切线新定义数形结合,学生探索获得导数的几何意义通过例题和练习,巩固知识,加深对导数的认识【教学过程】(后附:学案“学生活动”)教学过程设计意图一、创设情境、导入新课1.回顾旧知、引出研究的问题:前面我们学习了函数在处的导数就是函数在该点处的瞬时变化率。那么:问:(1)求导数的步骤有哪几步?生:第一步:求平均变化率;第二步:求瞬时变化率.(即,平均变化率趋近于的确定常数就是该点导数)(2)观察函数的图象

8、,平均变化率在图形中表示什么?老师引导学生回忆联系本节课的旧知识,下面探究导数的几何意义也是依据导数概念的形成,寻求解决问题的途径。教师板书,便于学生数形结合探究导数的几何意义。生:平均变化率表示的是割线的斜率.师:这就

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。