欢迎来到天天文库
浏览记录
ID:30199243
大小:190.55 KB
页数:8页
时间:2018-12-27
《课时一元二次方程》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第1课时一元二次方程(1)1、使学生了解一元二次方程的意义。2、通过提供实际问题的情境,让学生感受到在我们的生活、学习中方程知识的实际意义。3、能够根据具体问题中的数学关系,列出程体会一元二次方程是刻画现实世界的一个有效的数学模型。建立一元二次方程的概念,认识一元二次方程的一般形式。在一元二次方程化成一般形式后,如何确定一次项和常数项。一、自主学习感受新知【问题1】有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?【分析】设宽为x米,则列方程得:x(x+10)=900;整理得x2
2、+10x-900=0①【问题2】学校图书馆去年年底有图书5万册,预计至明年年底增加到7.2万册,求这两年的年平均增长率。【分析】设这两年的年平均增长率为x,则列方程得:5(1+x)2=7.2;整理得5x2+10x-2.2=0②【问题2】学校要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【分析】全部比赛共4×7=28场,设应邀请x个队参赛,则每个队要与其它(x-1)队各赛1场,全场比赛共场,列方程得:;整理得x2-x-
3、56=0③二、自主交流探究新知【探究】(1)上面三个方程左右两边是含未知数的整式(填“整式”“分式”“无理式”);(2)方程整理后含有一个未知数;(3)按照整式中的多项式的规定,它们最高次数是二次。【归纳】1、一元二次方程的定义等号两边都是整式,只含有一个求知数(一元),并且求知数的最高次数是2(二次)的方程,叫做一元二次方程。2、一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的一般形式。其中ax2是二次项,a是二次
4、项系数,bx是一次项,b是一次项系数,c是常数项。【注意】方程ax2+bx+c=0只有当a≠0时才叫一元二次方程,如果a=0,b≠0时就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。【补充练习】判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-=x2-2x+;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;(6)ax2+bx+c=0三、自主应用巩固新知【例1】将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二
5、次项系数、一次项系数及常数项.【分析】一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:3x2-3x=5x+10移项合并同类项,得:3x2-8x-10=0其中二次项系数是3,一次项系数是-8,常数项是-10。【注意】二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.【例2】将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数
6、;常数项.【分析】通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项合并同类项,得:2x2+2x-4=0其中二次项是2x2,二次项系数是2,一次项是2x,一次项系数是-8,常数项是-10。【例3】求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.【分析】要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.证明:m2-8m+17=(m
7、-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.【练习】Р2712四、自主总结拓展新知1、a≠0是ax2+bx+c=0成为一元二次方程的必要条件,否则,方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。五、课堂作业P2812567(《课堂内外》对应练习)教学理念/教学反思四、自主总结拓展新知1、a≠0是ax2+bx+c=0成为一元二次方程的必要条件,否则,
8、方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。五、课堂作业P2812567(《课堂内外》对应练习)教学理念/教学反思第2课时一元二次方程(2)学习目标1、会进行简单的一元二次方程的试解;理解方程解的概念。2、会估算实际问题中方程的解,并理解方程解的实际意义。学习重点一元二次方程解的探索。学习难
此文档下载收益归作者所有