欢迎来到天天文库
浏览记录
ID:29780201
大小:390.56 KB
页数:9页
时间:2018-12-23
《(全国通用)2016版高考数学 考前三个月复习冲刺 专题3 第6练 夯基础-熟练掌握基本初等函数 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第6练 夯基础——熟练掌握基本初等函数[题型分析·高考展望] 基本初等函数的性质、图象及其应用是高考每年必考内容,一般为二至三个选择题、填空题,难度为中档.在二轮复习中,应该对基本函数的性质、图象再复习,达到熟练掌握,灵活应用.对常考题型进行题组强化训练,图象问题难度稍高,应重点研究解题技巧及解决此类问题的总体策略.常考题型精析题型一 指数函数的图象与性质指数函数性质:指数函数y=ax(a>0且a≠1)为单调函数;当a>1时在(-∞,+∞)上为增函数,当02、数,值域y∈(0,+∞).例1 (1)(2015·昆明模拟)设a=20.3,b=30.2,c=70.1,则a,b,c的大小关系为( )A.c3、ax-14、=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.点评 (1)指数函数值比较大小,除考虑指数函数单调性、值域外,还需考虑将其转化为幂函数,利用幂函数的单调性比较大小.(2)数形结合思想是解决函数综合问题的主要手段,将问题转化为基5、本函数的图象关系,比较图象得出相关变量的方程或不等关系,从而使问题解决.变式训练1 (1)(2015·山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )A.a<b<cB.a<c<bC.b<a<cD.b<c<a(2)(2015·江苏)不等式2x2-x<4的解集为________.题型二 对数函数的图象与性质y=logax(a>0且a≠1)基本性质:过定点(1,0);a>1时在(0,+∞)上单调递增,06、0,1),y>0;a>1时,x∈(1,+∞),y>0,x∈(0,1),y<0;y=logax,x∈(0,+∞),y∈R,是非奇非偶函数.例2 (2014·福建)若函数y=logax(a>0,且a≠1)的图象如图所示,则所给函数图象正确的是( )点评 对于含参数的指数、对数函数问题,在应用单调性时,要注意对底数进行讨论.解决对数函数问题时,首先要考虑其定义域,其次再利用性质求解.变式训练2 (1)(2015·四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.7、必要不充分条件D.既不充分也不必要条件(2)(2015·苏北四市联考)设函数f(x)=若f(-a)>f(a),则实数a的取值范围是________________.题型三 幂函数的图象和性质例3 (2014·重庆)已知函数f(x)=且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是( )A.∪B.∪C.∪D.∪点评 在幂函数中,y=x-1非常重要,在高考中经常考查,要会画其函数作平移变换后的图象,并对其对称中心、单调性作深入研究.变式训练3 (1)(2015·湖南)设x∈R,则“x8、>1”是“x3>1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知定义域为R的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有3个不同的实根x1,x2,x3,则x+x+x等于( )A.13B.C.5D.高考题型精练1.(2015·重庆)函数f(x)=log2(x2+2x-3)的定义域是( )A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)2.(2015·课标全国Ⅰ)设函数y=f(x)的图象与y=2x+a的图象关于直9、线y=-x对称,且f(-2)+f(-4)=1,则a等于( )A.-1B.1C.2D.43.(2014·山东)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,01D.0b>aB.b>c>aC.a>c>bD.a>b>c5.(2014·安徽)设a=log37,b=21.1,c=0.83.1,则( )A.b10、0,b>0( )A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则abD.若2a-2a=2b-3b,则a
2、数,值域y∈(0,+∞).例1 (1)(2015·昆明模拟)设a=20.3,b=30.2,c=70.1,则a,b,c的大小关系为( )A.c3、ax-14、=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.点评 (1)指数函数值比较大小,除考虑指数函数单调性、值域外,还需考虑将其转化为幂函数,利用幂函数的单调性比较大小.(2)数形结合思想是解决函数综合问题的主要手段,将问题转化为基5、本函数的图象关系,比较图象得出相关变量的方程或不等关系,从而使问题解决.变式训练1 (1)(2015·山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )A.a<b<cB.a<c<bC.b<a<cD.b<c<a(2)(2015·江苏)不等式2x2-x<4的解集为________.题型二 对数函数的图象与性质y=logax(a>0且a≠1)基本性质:过定点(1,0);a>1时在(0,+∞)上单调递增,06、0,1),y>0;a>1时,x∈(1,+∞),y>0,x∈(0,1),y<0;y=logax,x∈(0,+∞),y∈R,是非奇非偶函数.例2 (2014·福建)若函数y=logax(a>0,且a≠1)的图象如图所示,则所给函数图象正确的是( )点评 对于含参数的指数、对数函数问题,在应用单调性时,要注意对底数进行讨论.解决对数函数问题时,首先要考虑其定义域,其次再利用性质求解.变式训练2 (1)(2015·四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.7、必要不充分条件D.既不充分也不必要条件(2)(2015·苏北四市联考)设函数f(x)=若f(-a)>f(a),则实数a的取值范围是________________.题型三 幂函数的图象和性质例3 (2014·重庆)已知函数f(x)=且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是( )A.∪B.∪C.∪D.∪点评 在幂函数中,y=x-1非常重要,在高考中经常考查,要会画其函数作平移变换后的图象,并对其对称中心、单调性作深入研究.变式训练3 (1)(2015·湖南)设x∈R,则“x8、>1”是“x3>1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知定义域为R的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有3个不同的实根x1,x2,x3,则x+x+x等于( )A.13B.C.5D.高考题型精练1.(2015·重庆)函数f(x)=log2(x2+2x-3)的定义域是( )A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)2.(2015·课标全国Ⅰ)设函数y=f(x)的图象与y=2x+a的图象关于直9、线y=-x对称,且f(-2)+f(-4)=1,则a等于( )A.-1B.1C.2D.43.(2014·山东)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,01D.0b>aB.b>c>aC.a>c>bD.a>b>c5.(2014·安徽)设a=log37,b=21.1,c=0.83.1,则( )A.b10、0,b>0( )A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则abD.若2a-2a=2b-3b,则a
3、ax-1
4、=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.点评 (1)指数函数值比较大小,除考虑指数函数单调性、值域外,还需考虑将其转化为幂函数,利用幂函数的单调性比较大小.(2)数形结合思想是解决函数综合问题的主要手段,将问题转化为基
5、本函数的图象关系,比较图象得出相关变量的方程或不等关系,从而使问题解决.变式训练1 (1)(2015·山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )A.a<b<cB.a<c<bC.b<a<cD.b<c<a(2)(2015·江苏)不等式2x2-x<4的解集为________.题型二 对数函数的图象与性质y=logax(a>0且a≠1)基本性质:过定点(1,0);a>1时在(0,+∞)上单调递增,06、0,1),y>0;a>1时,x∈(1,+∞),y>0,x∈(0,1),y<0;y=logax,x∈(0,+∞),y∈R,是非奇非偶函数.例2 (2014·福建)若函数y=logax(a>0,且a≠1)的图象如图所示,则所给函数图象正确的是( )点评 对于含参数的指数、对数函数问题,在应用单调性时,要注意对底数进行讨论.解决对数函数问题时,首先要考虑其定义域,其次再利用性质求解.变式训练2 (1)(2015·四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.7、必要不充分条件D.既不充分也不必要条件(2)(2015·苏北四市联考)设函数f(x)=若f(-a)>f(a),则实数a的取值范围是________________.题型三 幂函数的图象和性质例3 (2014·重庆)已知函数f(x)=且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是( )A.∪B.∪C.∪D.∪点评 在幂函数中,y=x-1非常重要,在高考中经常考查,要会画其函数作平移变换后的图象,并对其对称中心、单调性作深入研究.变式训练3 (1)(2015·湖南)设x∈R,则“x8、>1”是“x3>1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知定义域为R的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有3个不同的实根x1,x2,x3,则x+x+x等于( )A.13B.C.5D.高考题型精练1.(2015·重庆)函数f(x)=log2(x2+2x-3)的定义域是( )A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)2.(2015·课标全国Ⅰ)设函数y=f(x)的图象与y=2x+a的图象关于直9、线y=-x对称,且f(-2)+f(-4)=1,则a等于( )A.-1B.1C.2D.43.(2014·山东)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,01D.0b>aB.b>c>aC.a>c>bD.a>b>c5.(2014·安徽)设a=log37,b=21.1,c=0.83.1,则( )A.b10、0,b>0( )A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则abD.若2a-2a=2b-3b,则a
6、0,1),y>0;a>1时,x∈(1,+∞),y>0,x∈(0,1),y<0;y=logax,x∈(0,+∞),y∈R,是非奇非偶函数.例2 (2014·福建)若函数y=logax(a>0,且a≠1)的图象如图所示,则所给函数图象正确的是( )点评 对于含参数的指数、对数函数问题,在应用单调性时,要注意对底数进行讨论.解决对数函数问题时,首先要考虑其定义域,其次再利用性质求解.变式训练2 (1)(2015·四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.
7、必要不充分条件D.既不充分也不必要条件(2)(2015·苏北四市联考)设函数f(x)=若f(-a)>f(a),则实数a的取值范围是________________.题型三 幂函数的图象和性质例3 (2014·重庆)已知函数f(x)=且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是( )A.∪B.∪C.∪D.∪点评 在幂函数中,y=x-1非常重要,在高考中经常考查,要会画其函数作平移变换后的图象,并对其对称中心、单调性作深入研究.变式训练3 (1)(2015·湖南)设x∈R,则“x
8、>1”是“x3>1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知定义域为R的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有3个不同的实根x1,x2,x3,则x+x+x等于( )A.13B.C.5D.高考题型精练1.(2015·重庆)函数f(x)=log2(x2+2x-3)的定义域是( )A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)2.(2015·课标全国Ⅰ)设函数y=f(x)的图象与y=2x+a的图象关于直
9、线y=-x对称,且f(-2)+f(-4)=1,则a等于( )A.-1B.1C.2D.43.(2014·山东)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,01D.0b>aB.b>c>aC.a>c>bD.a>b>c5.(2014·安徽)设a=log37,b=21.1,c=0.83.1,则( )A.b10、0,b>0( )A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则abD.若2a-2a=2b-3b,则a
10、0,b>0( )A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则abD.若2a-2a=2b-3b,则a
此文档下载收益归作者所有