欢迎来到天天文库
浏览记录
ID:29752077
大小:237.50 KB
页数:5页
时间:2018-12-23
《变化率与导数、导数的运算(学生学案)(生》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、专题018:变化率与导数、导数的运算(学生学案)(生) 考点要求:1.利用导数的几何意义求曲线在某点处的切线方程.2.考查导数的有关计算,尤其是简单的函数求导.3.本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导.知识结构:1.函数y=f(x)从x1到x2的平均变化率函数y=f(x)从x1到x2的平均变化率为.若Δx=x2-x1,Δy=f(x2)-f(x1),则平均变化率可表示为.2.函数y=f(x)在x=x0处的导数(1)导数的概念:从函数y=f(x)在x=x0处的瞬时变化率是:我们称它为函数在出的导数,记作或,即说明:(
2、1)导数即为函数y=f(x)在x=x0处的瞬时变化率(2),当时,,所以(2)几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).3.函数f(x)的导函数称函数为f(x)的导函数,导函数有时也记作y′.4.基本初等函数的导数公式若f(x)=c,则f′(x)=0;若f(x)=xα(α∈R),则f′(x)=αxα-1;若f(x)=sinx,则f′(x)=cosx;若f(x)=cosx,则f′(x)=-sinx;若f(x)=ax(a>0,且a≠1),则f′(x)=axln
3、_a;若f(x)=ex,则f′(x)=ex;若f(x)=logax(a>0,且a≠1),则f′(x)=;若f(x)=lnx,则f′(x)=.5.导数四则运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)′= (g(x)≠0).**6.复合函数的求导法则复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′.7.一个区别曲线y=f(x)“在”点P(x0,y0)处的切线与“过”点P(x0,y0)的切线的区别:曲线y=f(x)在点P(x0,y0)处的切线是
4、指P为切点,若切线斜率存在时,切线斜率为k=f′(x0-5-),是唯一的一条切线;曲线y=f(x)过点P(x0,y0)的切线,是指切线经过P点,点P可以是切点,也可以不是切点,而且这样的直线可能有多条.8/两种法则(1)导数的四则运算法则.**(2)复合函数的求导法则.9.三个防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.要正确理解直线与曲线相切和直线与曲线只有一个交点的区别.**3.正确分解复合函数的结构,由外向内逐层求导,做到不重不漏.基础自测:1.下列求导过程中①′=-;②()′=;③(logax)′=′=;④(ax)′=(elnax)′=(exln
5、a)′=exlnalna=axlna其中正确的个数是( ).A.1B.2C.3D.42.函数f(x)=(x+2a)(x-a)2的导数为( ).A.2(x2-a2)B.2(x2+a2)C.3(x2-a2)D.3(x2+a2)3.(2011·湖南)曲线y=-在点M处的切线的斜率为( ).A.-B.C.-D.4.(2011·江西)若f(x)=x2-2x-4lnx,则f′(x)>0的解集为( ).A.(0,+∞)B.(-1,0)∪(2,+∞)C.(2,+∞)D.(-1,0)5.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(
6、0))=______;=________(用数字作答).6.已知,则。7.若曲线的一条切线与直线垂直,则的方程为______________。例题选讲:例1:利用导数的定义求函数f(x)=x3在x=x0处的导数,并求曲线f(x)=x3在x=x0处切线与曲线f(x)=x3的交点.例2:求下列各函数的导数:-5-(1)y=;(2)y=(x+1)(x+2)(x+3);(3)y=sin;(4)y=+;**例3:求下列复合函数的导数(复合函数的导数).(1)y=(2x-3)5;(2)y=ln(2x+5).例4.已知曲线y=(1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.
7、例5.如果曲线的某一切线与直线平行,求切点坐标与切线方程.巩固作业:A组:一、选择题:1.函数的导数是()2.已知函数的解析式可()3.曲线上两点,若曲线上一点处的切线恰好平行于弦,则点的坐标为()4.若函数的图象的顶点在第四象限,则函数的图象是()二、填空题:5.已知曲线在处的切线的倾斜角为,则______,____.6.已知,则当时,_________。7.一物体做直线运动的方程为,的单位是的单位是,该物体在3秒末的瞬时速度是_
此文档下载收益归作者所有