欢迎来到天天文库
浏览记录
ID:29670139
大小:128.06 KB
页数:4页
时间:2018-12-22
《(浙江专版)2018年高考数学二轮专题复习 知能专练(十)等差数列、等比数列》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、知能专练(十)等差数列、等比数列一、选择题1.(2017·苏州模拟)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=( )A.-6 B.-4C.-2D.2解析:选A 根据等差数列的定义和性质可得,S8=4(a1+a8)=4(a3+a6),又S8=4a3,所以a6=0.又a7=-2,所以a8=-4,a9=-6.2.(2017·全国卷Ⅲ)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为( )A.-24B.-3C.3D.8解析:选A 设等差数列{an}的公差为d,因为a2,a3,a6成等比数列,所
2、以a2a6=a,即(a1+d)(a1+5d)=(a1+2d)2.又a1=1,所以d2+2d=0.又d≠0,则d=-2,所以{an}前6项的和S6=6×1+×(-2)=-24.3.已知等比数列{an}中,a4+a8=-2,则a6(a2+2a6+a10)的值为( )A.4B.6C.8D.-9解析:选A ∵a4+a8=-2,∴a6(a2+2a6+a10)=a6a2+2a+a6a10=a+2a4a8+a=(a4+a8)2=4.4.(2017·宝鸡质检)设等差数列{an}的前n项和为Sn,且S9=18,an-4=30(n>9),若Sn=336,则n的值为( )A.18B.19C.20
3、D.21解析:选D 因为{an}是等差数列,所以S9=9a5=18,a5=2,Sn===×32=16n=336,解得n=21.5.(2016·浙江高考)如图,点列{An},{Bn}分别在某锐角的两边上,且
4、AnAn+1
5、=
6、An+1An+2
7、,An≠An+2,n∈N*,
8、BnBn+1
9、=
10、Bn+1Bn+2
11、,Bn≠Bn+2,n∈N*(P≠Q表示点P与Q不重合).若dn=
12、AnBn
13、,Sn为△AnBnBn+1的面积,则( )A.{Sn}是等差数列B.{S}是等差数列C.{dn}是等差数列D.{d}是等差数列解析:选A 由题意,过点A1,A2,A3,…,An,An+1,…分别作直
14、线B1Bn+1的垂线,高分别记为h1,h2,h3,…,hn,hn+1,…,根据平行线的性质,得h1,h2,h3,…,hn,hn+1,…成等差数列,又Sn=×
15、BnBn+1
16、×hn,
17、BnBn+1
18、为定值,所以{Sn}是等差数列.故选A.6.已知等比数列{an}的公比为q,记bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),则以下结论一定正确的是( )A.数列{bn}为等差数列,公差为qmB.数列{bn}为等比数列,公比为q2mC.数列{cn}为等比数列,公比为D.数列{c
19、n}为等比数列,公比为解析:选C 等比数列{an}的通项公式an=a1qn-1,所以cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m=a1qm(n-1)·a1qm(n-1)+1·…·a1qm(n-1)+m-1=aqm(n-1)+m(n-1)+1+…+m(n-1)+m-1=aq=aq.所以数列{cn}为等比数列,公比为.二、填空题7.(2017·全国卷Ⅲ)设等比数列{an}满足a1+a2=-1,a1-a3=-3,则a4=________.解析:设等比数列{an}的公比为q,则a1+a2=a1(1+q)=-1,a1-a3=a1(1-q2)=-3,两式相除,得=,
20、解得q=-2,a1=1,所以a4=a1q3=-8.答案:-88.已知公比q不为1的等比数列{an}的首项a1=,前n项和为Sn,且a2+S2,a3+S3,a4+S4成等差数列,则q=________,S6=________.解析:由a2+S2=+q,a3+S3=+q+q2,a4+S4=+q+q2+q3成等差数列,得2=+q++q+q2+q3,化简得(2q2-3q+1)q=0,q≠1,且q≠0,解得q=,所以S6==1-6=.答案: 9.(2018届高三·杭州七校联考)等比数列{an}中a1=2,公比q=-2,记Πn=a1×a2×…×an(即Πn表示数列{an}的前n项之积),Π
21、8,Π9,Π10,Π11中值最大的是________.解析:由a1=2,q=-2,Πn=a1×a2×…×an=(a1)nq,Π8=28(-2)28=236;Π9=29(-2)36=245;Π10=210(-2)45=-255;Π11=211(-2)55=-266.故Π9最大.答案:Π9三、解答题10.已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7+…+a3n-2.解:(1)设{an}的公差为d.由题意,a=
此文档下载收益归作者所有