欢迎来到天天文库
浏览记录
ID:29634097
大小:289.06 KB
页数:5页
时间:2018-12-21
《高一数学《等比数列的前n项和》教案(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§6.3.3等比数列的前n项和(一)教材分析:《等比数列的前n项和》,是在学生学习了等差数列、等比数列的概念及通项公式,等差数列的前n项和公式的基础上进行的。是进一步学习数列知识和解决一类求和问题的重要基础和有力工具。它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.数列内容的新课程设计与时俱进,注重数学过程,渗透数学思想和拓展思维空间。与旧教材相比新教材让学生体
2、验和理解公式形成的过程。学情分析:认识上:从学生的思维特点看,易与等差数列前n项和从公式的形成、特点等方面进行类比,但本节公式的推导与等差数列前n项和的推导有着本质的不同,这对学生的思维是一个突破,还应强调q=1的特殊情况。能力上:教学对象是高一学生,在课堂教学过程中,应注重过程、激发兴趣、发展学生的个性思维品质和实践能力,还应注意学生缺乏冷静、深刻,易片面、不严谨。情感态度:注意引导学生自主探究意识、培养学生处理问题时创新和实践能力及思维的严谨性教学目的:1.掌握等比数列的前n项和公式及公式证
3、明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题教学重点:等比数列的前n项和公式推导教学难点:灵活应用公式解决有关问题教材分析:本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件.也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法教学过程:一、复习:首先回忆一下前两节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的
4、前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比。公比通常用字母q表示(q≠0),即:{}成等比数列=q(,q≠0)“≠0”是数列{}成等比数列的必要非充分条件(前提条件)。2.等比数列的通项公式:,3.既是等差又是等比数列的数列:非零常数列.4.等比中项:G为a与b的等比中项.即G=±(a,b同号).5.性质:若m+n=p+q,6.判断等比数列的方法:定义法,中项法,通项公式法如:有一个数列满足,与公式比较我们可以判断出这个数列为等比数列且。二、讲解新课:*创设
5、情境兴趣导入【趣味数学问题】传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏.国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子.并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒.
6、计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺.这位大臣所要求的麦粒数究竟是多少呢?各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达依尔所要的奖赏就是这个数列的前64项和.*动脑思考探索新知如何求数列1,2,4,…262,263的各项和以1为首项,2为公比的等比数列的前64项的和,可表示为:①2②由②—①可得:这种求和方法称为“错位相减法”
7、“错位相减法”,是研究数列求和的一个重要方法等比数列的前n项和公式:∴当时,①或②当q=1时,当已知,q,n时用公式①;当已知,q,时,用公式②.公式的推导方法一:一般地,设等比数列它的前n项和是由得∴当时,①或②当q=1时,公式的推导方法二:===(结论同上)“方程”在代数课程里占有重要的地位,方程思想是应用十分广泛的一种数学思想,利用方程思想,在已知量和未知量之间搭起桥梁,使问题得到解决现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺?国王承诺奖赏的麦粒数为,据测量,一
8、般麦子的千粒重约为40g,则这些麦子的总质量约为7.36×g,约合7360多亿吨.我国2000年小麦的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!*巩固知识典型例题例5写出等比数列的前n项和公式并求出数列的前8项的和.解因为,所以等比数列的前n项和公式为,故.例6求等比数列1,2,4,…从第5项到第10项的和.解由,从第5项到第10项的和为-=1008例7一条信息,若一人得知后用一小时将信息传给两个人,这两个人又用一小时各传给未知此信息的另外两人,如此继续下去,一天时间可传遍
此文档下载收益归作者所有