欢迎来到天天文库
浏览记录
ID:29631884
大小:196.06 KB
页数:4页
时间:2018-12-21
《高中数学 第30课时两角和与差的余弦教学案 苏教版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、总课题两角和与差的三角函数总课时第30课时分课题两角和与差的余弦分课时第1课时教学目标会用向量的数量积推导两角差的余弦公式,并体会向量与三角函数之间的关系;会用余弦的差角公式余弦的和角公式,理解化归思想;能用和差角的余弦公式进行简单的三角函数式的化简、求值、证明。重点难点余弦差角公式的推导及运用1引入新课1、已知向量,夹角为,则==2、由两向量的数量积研究两角差的余弦公式=,简记作:思考:如何用距离公式推导公式3、在上述公式中,用代替得两角和的余弦公式:=,简记作:思考:你能直接用数量积推导两角和的余弦公式吗?1例题剖析例1、利用两角和(差)余弦公式证
2、明下列诱导公式:例2、利用两角和(差)的余弦公式,求的值。例3、已知,求的值。思考:在例3中,你能求出的值吗?例4、若,求注意:角的变换要灵活,如等1巩固练习1、化简:(1)=(2)=(3)=2、利用两角和(差)余弦公式证明:(1)(2)3、已知求的值1课堂小结两角和与差的余弦公式的推导;和(差)角余弦公式的运用于求值、化简、求角等1课后训练班级:高一()班姓名__________一、基础题1、=2、在中,已知,则的形状为3、计算(1)(2)=4、化简:(1)=(2)5、已知都是锐角,,则=6、已知=二、提高题7、(1)已知;(2)已知。8、已知,求的
3、值。三、能力题9、设为锐角,求证:。10、设为坐标原点,和为单位圆上两点,且。求证:
此文档下载收益归作者所有