高中数学 2.1.2系统抽样教学案 必修3

高中数学 2.1.2系统抽样教学案 必修3

ID:29623278

大小:119.06 KB

页数:6页

时间:2018-12-21

高中数学 2.1.2系统抽样教学案 必修3_第1页
高中数学 2.1.2系统抽样教学案 必修3_第2页
高中数学 2.1.2系统抽样教学案 必修3_第3页
高中数学 2.1.2系统抽样教学案 必修3_第4页
高中数学 2.1.2系统抽样教学案 必修3_第5页
资源描述:

《高中数学 2.1.2系统抽样教学案 必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.2系统抽样【教学目标】:1.正确理解系统抽样的概念.2.掌握系统抽样的一般步骤.【教学重难点】:教学重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.教学难点:灵活应用系统抽样的方法解决统计问题.【教学过程】:复习回顾:随机抽样有什么优缺点?答:优点是简单易行;缺点是当样本容量较大时工作量大且不易实现“搅拌均匀”.情境导入:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?新知探究:一、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n

2、的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[].(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,此编号基础上加上分段间隔的整倍数即为抽样编号.练一练:(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中

3、任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈解析:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。二、系统抽样的一般步骤:(1)采用随机抽样的方法将总体中的N个个编号。(2)将整体按编号进行分段,确定分段间隔k,

4、k=[].(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本。【说明】(1)从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。(2)如果遇到不是整数的情况,可以先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除。【精讲精练】:例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的

5、比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。解析:按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1个编号。解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,59组是编号为291~295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,29

6、3。点评:注意分清分段间隔及分段数.变式训练1、为了了解某大学一年级新生英语学习的情况,拟从503名大学生中抽取50名作为样本,请用系统抽样地方法进行抽取,并写出过程。[分析]总体个数503不能被50整除,所以应首先从503名学生中随机的剔除3人,再按照系统抽样的方法进行抽样。解:略【反馈测评】:(1)设某校共有118名教师,为了支援西部的教育事业,现要从中随机的抽出16名教师组成暑期西部讲师团,请用系统抽样法选出讲师团成员。(2)有人说,我们可以借用居民身份证号码(18位)来进行中央电视台春节联欢晚会的收视率调查;在1~999中抽取一个随机数,比如这个数是632,那么

7、身份证后三位是632的观众就是我要调查的对象。请问这样所获得的样本有代表性吗?为什么?解析:(1)118不能被16整除,余6,所以先从118名教师中随机的剔除6个人,再按系统抽样的方法进行抽样。(2)身份证倒数第二位表示性别,后2位是632的观众全是男性,所以没有代表性。【板书设计】:一、系统抽样的定义二、系统抽样的一般步骤例题讲解练一练小结【作业布置】:优化丛书体验成功2.1.22.1.2系统抽样课前预习学案一、预习目标预习系统抽样的概念,初步了解系统抽样的一般步骤.二、预习内容一般地,要从容量为N的总体中抽取容量为n的样本,可将总体,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。