欢迎来到天天文库
浏览记录
ID:29615125
大小:71.06 KB
页数:4页
时间:2018-12-21
《2017年高中数学 第三章 导数及其应用 3.1 导数概念 3.1.3 导数的概念和几何意义同步练习 湘教版选修1-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.3导数的概念和几何意义1.质点的运动规律为s=2t2+1,其中s表示路程,t表示时间,则在某时间段[1,1+d]中,质点运动的路程s对时间t的平均变化率为( ).A.4B.dC.4+dD.4+2d2.函数y=f(x)=+1在x=1处的导数是( ).A.B.1C.D.43.函数y=f(x)=x2的导函数是( ).A.xB.2xC.x2D.2x24.曲线f(x)=x3+2x+1在点P(1,4)处的切线方程是( ).A.5x-y+1=0B.x-5y-1=0C.5x-y-1=0D.x-5y+1=05.函数f(x)=x3+4x+1,
2、则f′(x)=( ).A.3x2+4B.4x2+3C.x3+4xD.x2+46.对于函数y=x2,在x=__________处的导数值等于其函数值.7.曲线y=f(x)=2x-x3在点(1,1)处的切线方程为__________.8.曲线y=x3在点(a,a3)(a≠0)处的切线与x轴、直线x=a所围成的三角形的面积为,则a=__________.9.直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求a的值及切点的坐标.10.已知直线l1为曲线y=f(x)=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l
3、1⊥l2.(1)求直线l2的方程;(2)求由直线l1,l2和x轴所围成的三角形的面积.参考答案1.D 平均变化率为==4+2d.2.A ===,当d趋于0时,趋于.∴f′(1)=.3.B ==2x+d,当d趋于0时,2x+d趋于2x,∴f′(x)=2x.4.C 因为P(1,4)在曲线上,所以在曲线上取另一点Q(1+d,f(1+d)),计算PQ的斜率为k(1,d)====d2+3d+5.当d趋于0时,d2+3d+5趋于5,所以所求切线的斜率为5,∴切线方程为y-4=5(x-1),即5x-y-1=0.5.A ==3x2+4+3xd+d2.当d
4、趋于0时,3x2+4+3xd+d2趋于3x2+4,∴f′(x)=3x2+4.6.0或2 设x=x0,则==d+2x0.当d趋于0时,d+2x0趋于2x0.由题意得:2x0=x02.∴x0=0或x0=2.7.x+y-2=0 ==-1-3d-d2.当d趋于0时,-1-3d-d2趋于-1,∴f′(1)=-1,即所求切线的斜率为-1.∴所求切线的方程为y-1=-1×(x-1),即x+y-2=0.8.±1 ==3a2+3ad+d2,当d趋于0时,3a2+3ad+d2趋于3a2.∴曲线在点(a,a3)处的切线的斜率为3a2.∴曲线在点(a,a3)处的
5、切线方程为y-a3=3a2(x-a).∴切线与x轴的交点为(a,0).∴
6、a-a
7、·
8、a3
9、=,解得a=±1.9.解:设直线l和曲线C相切于点P(x0,y0).令f(x)=x3-x2+1,则==d2+3x0d+3x02-2x0-d.当d趋于0时,有f′(x0)=3x02-2x0.由题意知3x02-2x0=1,解得x0=-或1.于是切点坐标为(-,)或(1,1).当切点为(-,)时,=-+a,∴a=.当切点为(1,1)时,1=1+a,∴a=0(舍去).∴a的值为,切点坐标为(-,).10.解:(1)由导数的概念,得k1=f′(1)=3,∴直
10、线l1的方程为y=3x-3.设直线l2与曲线y=x2+x-2的切点为B(b,b2+b-2),则k2=f′(b)=2b+1,∵l1⊥l2,∴(2b+1)×3=-1,解得b=-.∴直线l2的方程为y=-x-.(2)解方程组得∴直线l1与l2的交点坐标为(,-).又∵l1,l2与x轴的交点坐标分别为(1,0),(-,0),∴所求三角形的面积S=××
11、-
12、=.
此文档下载收益归作者所有