高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修

高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修

ID:29291935

大小:153.00 KB

页数:9页

时间:2018-12-18

高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修_第1页
高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修_第2页
高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修_第3页
高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修_第4页
高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修_第5页
资源描述:

《高一数学 5.9正弦定理、余弦定理(第一课时) 大纲人教版必修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、●课题§5.9.1正弦定理、余弦定理(一)●教学目标(一)知识目标正弦定理.(二)能力目标1.了解向量知识应用;2.掌握正弦定理推导过程;3.会利用正弦定理证明简单三角形问题;4.会利用正弦定理求解简单斜三角形边角问题;5.能利用计算器进行运算.(三)德育目标通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一.●教学重点正弦定理证明及应用.●教学难点1.向量知识在证明正弦定理时的应用,与向量知识的联系过程;2.正弦定理在解三角形时应用思路.●教学方法启发引导式1.引导学生在证明正弦定理时与向量数量积的知识产生联系,主要在于如何与角产生联

2、系,并注意利用三角函数的诱导公式对同角正余弦进行转化,在应用向量知识的同时,体现三角函数、正弦定理、向量数量积等多处知识之间的联系.2.启发学生注意正弦定理的变形式,并总结正弦定理的适用题型的特点,在恰当时机正确选用正弦定理达到求解、求证目的.●教具准备投影仪、幻灯片三张第一张:直角三角形边角关系(记作§5.9.1A)在Rt△ABC中,已知BC=a,AC=b,AB=c,则有sinA=,sinB=,sinC=1,即c=,c=,c=,∴==第二张:正弦定理(记作§5.9.1B)形式1:===2R形式2:=,=,=.形式3:a=2RsinA,b=2RsinB,c=2RsinC

3、第三张:在△ABC中,已知a、b和A时解三角形的各种情况(记作§5.9.1C)(1)A为锐角(2)A为直角或钝角●教学过程Ⅰ.课题导入[师]在初中,我们已经会解直角三角形.就是说,已会根据直角三角形中已知的边与角求出未知的边与角,而在直角三角形中,有如下的边角关系.(打出幻灯片§5.9.1A)==那么,在任意三角形中,这一关系式是否成立呢?这也是我们这一节课将要研究的问题.Ⅱ.讲授新课[师]对于==这一关系的证明,我们一起来看下面的证法.如图,在△ABC中,已知BC=a,AC=b,AB=c,作△ABC的外接圆,O为圆心,连接BO并延长交圆于B′,设BB′=2R.则根据直

4、径所对的圆周角是直角以及同弧所对的圆周角相等可以得到:∠BAB′=90°,∠C=∠B′∴sinC=sinB′=∴=2R同理可得=2R,=2R∴===2R这就是说,对于任意的三角形,上述关系式均成立.因此,我们得到下面的定理.正弦定理在一个三角形中,各边和它所对的正弦的比相等,即==说明:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫.[师]接下来,

5、我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一处知识点体现边角关系呢?[生]向量的数量积的定义式:a·b=|a||b|cos,其中为两向量的夹角.[师]回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?[生]可以通过三角函数的诱导公式sin=cos(90°-)进行转化.[师]这一转化产生了新角90°-,这就为辅助向量j的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j垂直于三角形一边,且与一边夹角出现了90°-这一形式,这是作辅助向量j垂直于三角形一边的

6、原因.[师]在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得+=.而添加垂直于的单位向量j是关键,为了产生j与、、的数量积,而在上面向量等式的两边同取与向量j的数量积运算,也就在情理之中了.[师]下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点.说明:(1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用.(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用.向量法证明过程:(1)△ABC为锐角三角形,过点A作单位向量j垂直于,则j与的夹角为90

7、°-A,j与的夹角为90°-C.由向量的加法原则可得+=为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到j·(+)=j·由分配律可得j·+j·=j·∴|j|||cos90°+|j|||cos(90°-C)=|j|||cos(90°-A)∴asinC=csinA∴=另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得=.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90°-C,j与的夹角为90°-B)∴==.(2)△ABC为钝角三角形,不妨

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。