九年级数学上册 3.6 勾股定理教案(2) 湘教版

九年级数学上册 3.6 勾股定理教案(2) 湘教版

ID:29245043

大小:208.00 KB

页数:6页

时间:2018-12-18

九年级数学上册 3.6 勾股定理教案(2) 湘教版_第1页
九年级数学上册 3.6 勾股定理教案(2) 湘教版_第2页
九年级数学上册 3.6 勾股定理教案(2) 湘教版_第3页
九年级数学上册 3.6 勾股定理教案(2) 湘教版_第4页
九年级数学上册 3.6 勾股定理教案(2) 湘教版_第5页
资源描述:

《九年级数学上册 3.6 勾股定理教案(2) 湘教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.6勾股定理【教学内容】湘教版八年级数学上册第95~98页一、教学目标1.知识与技能:使学生掌握勾股定理,培养在实际生活中发现问题总结规律的意识和能力。2.过程与方法:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。3.情感、态度与价值观:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。二、重点、难点1.重点:勾股定理的内容及证明。2.难点:勾股定理的证明。3.难点的突破方法:几何学的产生,源于人们对土地面积的测量需要。在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积

2、泥土,但也抹掉了田地之间的界限标志。水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积。几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具。本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。三、教学过程(一)、新课引入已知树高6米,在树梢上有一猫头鹰,猫头鹰从树梢斜飞落地抓老鼠,落点与树根相距8米,那么猫头鹰至少飞过多少米?(二)、探究定理1、画一画:让学生动手画一个直角边长为3cm和4cm的直角△A

3、BC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。2、做一做(1)、如图1、以这个直角三角形的三边为边作三个正方形,探究这三个正方形的面积之间有什么关系。正方形PQQPRR面积91625思考:问题1:这三个正方形的面积分别为多少?你是怎么求的?问题2:这三个正方形的面积之间满足一个么等式?图1问题3:正方形的面积等于边

4、长的平方,那么它们的面积用边长代入得到一个什么等式?问题4:我们前面说过:在直角三角形中,我们把较短的直角边叫勾,较长的直角边叫股,斜边叫弦,那么勾股弦之间满足一个什么等式?(2)、再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。这个三角形的三边也满足勾2+股2=弦2吗?3、议一议对于任意的直角三角形也有这个性质吗?4、猜一猜直角三角形的两直角边的平方和等于斜边的平方。即在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c,有a2+b2=c2【过渡语】猜想的结论是否正确须经过严格论证。证明该结论很难,许多数学家

5、经过艰辛的努力,已想出很多种巧妙的证法,下面让大家体验一下其中的一种证法:我国三国时期的数学家赵爽创造的一种证法。5、探一探(小组活动)⑴、请同学们拿出准备好的4个全等的直角三角形模型,最好是有颜色的吹塑纸,三边分别标好a,b,c,拼出一个边长为c的正方形,利用面积相等进行证明(赵爽弦图,如图2)。xx。k.Com]bbbbccccaaaa图2【小组合作探究】,思考:问题1:你拼的四边形是正方形吗?为什么?问题2:图中分别有几个正方形?几个直角三角形?问题3:大正方形由哪几个图形构成?问题4:它们的面积之间满足什么样的关系?问题5:分

6、别怎么来表示它们的面积?⑵、证明:如图2左(赵爽弦图)所示,其等量关系为:4S△+S小正=S大正即4×ab+(b-a)2=c2,cbCaBA化简可证。右图证明请同学们课后自己思考,教材第96-97页有另一种证法,请同学们现在用2分钟看完。6、归纳总结勾股定理:直角三角形两直角边的平方和等于斜边的平方。即在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c,有a2+b2=c2。图3我国称这个结论为“勾股定理”,西方称它为“毕达哥拉斯定理”,为什么呢?(1)介绍《周髀算经》中西周的商高(公元一千多年前)发现了勾三股四弦五这个规律

7、(2)介绍西方毕达哥拉斯于公元前582~493时期发现了勾股定理;c2=a2+b2(3)对比以上事实对学生进行爱国主义教育,激励他们奋发向上.(4)反思:公式变形:a2=c2-b2b2=c2-a2说明:直角三角形的边长为正数,所以取算术平方根。问题1:勾股定理对所有的三角形都适用吗?为什么?问题2:勾股定理的条件是什么?结论是什么?结论:勾股定理揭示了在直角三角形中已知任意二边可以求第三边。(三)、勾股定理的应用1、例题分析:例1、如图4,在△ABC中,∠C=900,AB=17,AC=8,求BC的长。图4分析:在这个直角三角形中,已知

8、斜边和条直角边,求另一条直角边。根据勾股定理可得BC===15方法小结:利用勾股定理建立方程。2、练习:在一个直角三角形中有二边分别是3和4,那么另一边一定是5吗?(小组合作探究)(四)解决问题:已知树高6米,在树梢上有

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。