高中数学第2章统计2.1抽样方法2.1.3分层抽样互动课堂学案苏教版必修3

高中数学第2章统计2.1抽样方法2.1.3分层抽样互动课堂学案苏教版必修3

ID:29149636

大小:52.00 KB

页数:4页

时间:2018-12-17

高中数学第2章统计2.1抽样方法2.1.3分层抽样互动课堂学案苏教版必修3_第1页
高中数学第2章统计2.1抽样方法2.1.3分层抽样互动课堂学案苏教版必修3_第2页
高中数学第2章统计2.1抽样方法2.1.3分层抽样互动课堂学案苏教版必修3_第3页
高中数学第2章统计2.1抽样方法2.1.3分层抽样互动课堂学案苏教版必修3_第4页
资源描述:

《高中数学第2章统计2.1抽样方法2.1.3分层抽样互动课堂学案苏教版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.3分层抽样互动课堂疏导引导1.分层抽样(1)分层抽样适用于总体由差异明显的几个部分组成的情况,即层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体在总体上所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,只要分层恰当,一般说来抽样结果就比简单随机抽样更能反映总体情况.(2)分层抽样和简单随机抽样与系统抽样的联系:将总体分成几层,分层抽取时采用简单随机抽样或系统抽样.(3)分层抽样的步骤①将总体按一定的标准(分层的标准由题意来确定)分层;②计算各层的个体数与总体的个体的比;③按各层中个

2、体数占总体的比确定各层应抽取的样本容量;④在每一层进行抽样,抽样时根据各层中个体的个数选择适当的抽样方法:个体数较少时用简单随机抽样,当个体数较多时可采用系统抽样.(4)分层抽样的优点是,使样本具有较强的代表性,而且在各层抽样时,又可灵活地选用不同的抽样法.因此,分层抽样应用也比较广泛.(5)分层抽样的公平性分层抽样中,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,所以在分层抽样时,每一个个体被抽到的几率都是相等的.案例1一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人,为了了解

3、职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,并写出过程.【探究】分层抽样中各层抽取的个体数依各层个体数之比来分配,确定各层抽取的个体数之后,可采用简单随机抽样或系统抽样在各层中抽取个体.解法一:三部分所含个体数之比为112∶16∶32=7∶1∶2,设三部分抽个体数为7x,x,2x,则由7x+x+2x=20得x=2.故业务人员、管理人员、后勤服务人员抽取的个体数分别为14,2和4.对112名业务人员按系统抽样分成14个部分,其中每个部分包括8个个体,对每个部分利用简单随机抽样抽取个体.若将160名人员依次编号为1

4、,2,3,…,160.那么在1—112名业务人员中第一部分的个体编号为1—8.从中随机取一个号码,如它是4号,那么可以从第4号起,按系统抽样法每隔8个抽取1个号码,这样得到112名业务人员被抽出的14个号码依次为4,12,20,28,36,44,52,60,68,76,84,92,100,108.同样可抽出的管理人员和服务人员的号码分别为116,124和132,140,148,156.将以上各层抽出的个体合并起来,就得到容量为20的样本.解法二:由160÷20=8,所以可在各层中人员按8∶1的比例抽取,又因为160÷8=2,112÷8=14

5、,32÷8=4,所以管理人员2人,后勤服务人员4人,业务人员14人.以下同方法一.规律总结弄清三种抽样方法的实质,是灵活选用抽样方法的前提和基础.本题抓住了“分层抽样中各层抽取个体数依各层个体数之比来分配”这一分层抽样的特点,首先确定了各层应该抽取的个体数,之后可采用系统抽样或简单随机抽样来完成抽样过程.解决此例的关键在于对概念的正确理解以及在每一次抽样的步骤中所采用的抽样方法,应注意语言叙述的完整性.2.三种抽样方法的联系与区别简单随机抽样、系统抽样和分层抽样,关系密切,对抽取的样本来说,可谓异曲同工.注意对三者进行比较,加深对三者的理解

6、,并在抽样实践中正确地对它们进行选择.对三种抽样方法比较如下:类别共同点各自特点相互联系适用范围简单随机抽样(1)抽样过程中每个个体被抽取的概率相等(2)均属于不放回抽样从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成抓住三种抽样方法的本质特征是正确应用这三种抽样方法的前提.案例2某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n

7、的样本;如果采用系统抽样和分层抽样方法抽取,却不用剔除个体;如果样本容量增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.【探究】总体容量为6+12+18=36(人).当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取工程师人数为×6=人,技术员人数为×12=人,技工人数为×18=人,所以n应是6的倍数,36的约数,即n=6,12,18,24.当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为,因为必须是整数,所以n只能取6,即样本容量n=6.规律总结抓住分层抽样与系统抽样的特点是正确解题的

8、关键.案例3某单位有老人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。