..平面向量数量积的坐标表示模夹角

..平面向量数量积的坐标表示模夹角

ID:29081291

大小:233.50 KB

页数:5页

时间:2018-12-16

..平面向量数量积的坐标表示模夹角_第1页
..平面向量数量积的坐标表示模夹角_第2页
..平面向量数量积的坐标表示模夹角_第3页
..平面向量数量积的坐标表示模夹角_第4页
..平面向量数量积的坐标表示模夹角_第5页
资源描述:

《..平面向量数量积的坐标表示模夹角》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.4.2平面向量数量积的坐标表示、模、夹角一、教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到

2、平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面

3、向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.二、教学目标1、知识与技能:掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。2、过程与方法:通过用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系,明确数学是研究数与形有机结合的学科。3、情感态度与价值观:能用所学知识解决有关综合问题。[来源:学科网ZXXK]三、重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.四、教学设想[来源:学科网ZXXK](

4、一)导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又

5、该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.(二)推进新课、新知探究、提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都

6、可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和  补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论

7、性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.2°向量模的坐标表示若a=(x,y),则

8、a

9、2=x2+y2,或

10、a

11、=.如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么a=(x2-x1,y2-y1),

12、a

13、=3°两向量垂直的坐标表示设a=(x1,y1),b=(x2,y2),则a⊥bx1x2+y1y2=0.4°两向量夹角的坐标表示设a、b都是非零向量,a=(x1,y1),b=(x2,y2),θ是

14、a与b的夹角,根据向量数量积的定义及坐标表示,可得cosθ=讨论结果:略.(三)应用示例例1已知A(1,2)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。