八年级数学下册 17.1 勾股定理(第1课时)学案(新版)新人教版

八年级数学下册 17.1 勾股定理(第1课时)学案(新版)新人教版

ID:29074799

大小:194.00 KB

页数:4页

时间:2018-12-16

八年级数学下册 17.1 勾股定理(第1课时)学案(新版)新人教版_第1页
八年级数学下册 17.1 勾股定理(第1课时)学案(新版)新人教版_第2页
八年级数学下册 17.1 勾股定理(第1课时)学案(新版)新人教版_第3页
八年级数学下册 17.1 勾股定理(第1课时)学案(新版)新人教版_第4页
资源描述:

《八年级数学下册 17.1 勾股定理(第1课时)学案(新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、勾股定理学习小组长评价和签字完成订正签字【学习目标】1.探索勾股定理,并会运用此定理由直角三角形的已知两边求第三边.2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.【学习重点】经历观察、实验、猜想、论证的过程探索勾股定理;掌握直角三角形三边的数量关系,并进行计算.【学习难点】在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.【学前准备】认真阅读课本P63---P671.思考:你能发现图18.1-1的等腰直角三角形有什么性质吗?答:两个小正方形的面积=一个大正方形的面积+=归纳:等腰直角三

2、角形的三边的特殊关系:2.思考:其他的三角形是不是也有上述的性质呢?每个小方格的面积均为1,请分别算出图中各部分的面积:(1)正方形A的面积=正方形B的面积=正方形C的面积=这三个三角形的面积SA,SB,SC之间有什么关系?(2)正方形D的面积=正方形E的面积=正方形F的面积=这三个三角形的面积有什么关系?由方格图中正方形A、B、C和正方形D、E、F面积的关系是否能得到与上述相同的直角三角形的三边关系?猜想:如果直角三角形的直角边分别为,,斜边长为,那么.【课堂探究】例1下列图(1)是由四个全等直角三角形和一个小正方形拼成的大正

3、方形,请用不同方法求出大正方形的面积,由此,你能得出什么结论?例2如图,在直角梯形ABCD中,AB∥CD,∠B=90°,E是BC上的一点,且BE=CD=,AB=CE=,连结AE,DE.(1)求证:△AED是等腰直角三角形;(2)若AE=,请用不同方法求出梯形ABCD的面积,由此,你能得出什么结论?归纳总结:如果直角三角形的直角边分别为a,b,斜边长为c,那么.例3求出下列直角三角形中未知边的长度.想一想:已知直角三角形的两边,如何求第三边?(要注意什么)【课堂检测】4.在Rt△ABC中,∠C=90°,BC、AC、AB所对的边分别

4、为、、(画出草图)(1),,则.(2),,则.(3),,则.(4),,则.5.在Rt△ABC中,∠C=90°,AB=26,BC=10,求AC的长.(画出示意图)课后作业-勾股定理(课时1)班级:座号:姓名:一、选择题1.直角三角形的两条直角边长分别为7和9,则与斜边长最接近的整数为()A.11B.12C.13D.142.直角三角形的两条边长分别为3和4,则第三边长为()A.5B.C.5或D.4二、填空题3.在Rt△ABC中,∠C=90°,BC、AC、AB所对的边分别为、、(1),,则.(2),,则.画出草图(3),,则.(4),

5、,则.画出草图三、解答题4.在Rt△ABC中,∠C=90°,AB=15,BC=9,求AC的长.(画出示意图)5.如图,每个小正方形网格的边长为1,求△ABC的周长和面积.6.如图,△ABC中,AB=AC=10,BC=16.求△ABC的面积.7.如下图(1),(2)都是用四个相同的直角三角形(两条直角边分别为a,b,斜边为c)和一个小正方形拼成一个大正方形.①根据上图(1)、(2)按不同方法求大正方形面积可以得到a、b、c三边有什么关系?请写出说明过程;②若右图(2)中,大正方形的边长为13,每个直角三角形两直角边的和是17,求中

6、间小正方形的面积.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。