欢迎来到天天文库
浏览记录
ID:28947788
大小:110.00 KB
页数:9页
时间:2018-12-15
《九年级数学上册 第22章 二次函数 22.1 二次函数的图像和性质教案 (新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十二章二次函数22.1.1 二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学难点:求出函数的自变量的取值范围。教学过程:一、问题引新1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2、AB长x(m)123456789BC长(m)12面积y(m2)482.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?y=x(20-2x)二、提出问题,解决问题1、引导学生看书问题一、二2、观察概括y=6x2d=n/2(n-3)y=20(1-x)2以上函数关系式有什么共同特点?(都是含有二次项)3、二次函数定义:形如y=ax2+bx+
3、c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.4、课堂练习(1)(口答)下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1二次函数(3)y=2x3-3x2(4)y=5x4-3x+1二次函数定义:形如y=ax2+bx+c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.(2).P3练习第1,2题。五、小结叙述二次函数的定义.六、作业:同步练习册七、板书八、教学反思
4、:22.1.2 二次函数y=ax2的图象和性质教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象教学难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质。教学过程:一、问题引新1,同学们可以回想一下,一次函数的性质是什么?2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?3.一次函数的图象是
5、什么?二次函数的图象是什么?二、学习新知1、例1、画二次函数y=2x2与y=2x2的图象。(有学生自己完成)解:(1)列表:在x的取值范围内列出函数对应值表:(2)描点(3)连线x…-3-2-10123…y…9410149…找一名学生板演画图提问:观察这个函数的图象,它有什么特点?(让学生观察,思考、讨论、交流,)2、归纳:抛物线概念:像这样的曲线通常叫做抛物线。抛物线与它的对称轴的交点叫做抛物线的顶点.顶点坐标(0,0)3、运用新知(1).观察并比较两个图象,你发现有什么共同点?又有什么区别?(2)
6、.课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较(3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示)让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2(a>0)取得最小值,最
7、小值y=______三、总结:函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。四、课堂练习:练习1、2、3、4。五、作业:1.画出函数y=1/2x2的图象? 2.写出函数y=ax2具有哪些性质?六、教学反思:22.1.3二次函数y=ax2+b的图象和性质教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。教学重点:会用描点法画出二次函数y=a
8、x2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你
此文档下载收益归作者所有