七年级数学下册 6.2 立方根导学案(新版)新人教版(9)

七年级数学下册 6.2 立方根导学案(新版)新人教版(9)

ID:28934355

大小:157.50 KB

页数:3页

时间:2018-12-15

七年级数学下册 6.2 立方根导学案(新版)新人教版(9)_第1页
七年级数学下册 6.2 立方根导学案(新版)新人教版(9)_第2页
七年级数学下册 6.2 立方根导学案(新版)新人教版(9)_第3页
资源描述:

《七年级数学下册 6.2 立方根导学案(新版)新人教版(9)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、6.2.1立方根一、学习目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、体会一个数的立方根的唯一性,分清一个数的立方根与平方根的区别。二、重点难点重点:立方根的概念和求法。难点:立方根与平方根的区别。三、自主探究1.平方根是如何定义的?平方根有哪些性质?2、问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是3、思考:(1)的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是4、立方根的概念:如果一个数的立方等于a,这个数就叫做a的.(也叫做数a的)

2、.换句话说,如果,那么x叫做a的立方根或三次方根.记作:.读作“”,其中a是,3是,且根指数3省略(填能或不能),否则与平方根混淆.5、开立方求一个数的的运算叫做开立方,与开立方互为逆运算6、立方根的性质(1)教科书49页探究(2)总结归纳:正数的立方根是数,负数的立方根是数,0的立方根是.(3)思考:每一个数都有立方根吗?一个数有几个立方根呢?(4)平方根与立方根有什么不同?被开方数平方根立方根正数负数零四、精讲精练例1、求下列各式的值:(1);(2)例2、求满足下列各式的未知数x:(1)练习1.判断正误:(1)、25的立方根是5;()(2)、互为相反数的两个数,它们的立方

3、根也互为相反数;()(3)、任何数的立方根只有一个;()(4)、如果一个数的平方根与其立方根相同,则这个数是1;()(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;()(6)、一个数的立方根不是正数就是负数.()(7)、–64没有立方根.()2、(1)64的平方根是________立方根是________.(2)的立方根是________.(3)是_______的立方根.(4)若,则x=_______,若,则x=________.(5)若,则x的取值范围是__________,若有意义,则x的取值范围是_______________.3、计算:(1)4、已知x-

4、2的平方根是,的立方根是4,求的值.五、课堂小结:6.2.2立方根导学案(2)一、引入1.立方根及开立方的概念2.平方根与立方根有什么不同?被开方数平方根立方根正数负数零3、(1)64的平方根是________立方根是________.(2)的立方根是________.(3)是_______的立方根.(4)若,则x=_______,若,则x=________.(5)若,则x的取值范围是__________二、自主探究1、完成教科书50页探究,总结规律求负数的立方根,可以先求出这个负数的的立方根,再取其,即思考:立方根是它本身的数是,平方根是它本身的数是三、精讲精练例1、求下列

5、各式的值:(1);(2)(3);例2、求满足下列各式的未知数x:(1)四、练习1.完成51页练习2、计算:3、计算:.五、课堂小结:求负数的立方根,可以先求出这个负数的的立方根,再取其,即思考:立方根是它本身的数是,平方根是它本身的数是六、我的收获

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。