奥数:第四讲 认识简单数列

奥数:第四讲 认识简单数列

ID:28768055

大小:754.50 KB

页数:6页

时间:2018-12-14

奥数:第四讲   认识简单数列_第1页
奥数:第四讲   认识简单数列_第2页
奥数:第四讲   认识简单数列_第3页
奥数:第四讲   认识简单数列_第4页
奥数:第四讲   认识简单数列_第5页
资源描述:

《奥数:第四讲 认识简单数列》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四讲认识简单数列我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1找出下面各数列的规律,并填空.(1)l,2,3,4,5,□,□,8,9,10.(2)l,3,5,7,9,□,□,15,17,19.(3)2,4,6,8,10,□,□,16,18,20.(4)1,4,7,10,□,□,19,22,25.(5)5,10,15,20,□,□,35,40,45.解:(1)是自然数列,它的规律是:后

2、一个数比前一个数大1;空处依次填:,.(2)是奇数列,它的规律是:后一个数比前一个数大2;空处依次填:,.(3)是偶数列,它的规律是:后一个数比前一个数大2;空处依次填:,.(4)是等差数列,它的规律是:后一个数比前一个数大3;空处依次填:,.(5)是等差数列,它的规律是:后一个数比前一个数大5;空处依次填:,.注意:自然数列、奇数列、偶数列也是等差数列.例2找出下面的数列的规律并填空.1,1,2,3,5,8,13,□,□,55,89.解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和.这是个有重要用途的数列.8+

3、13=21,13+21=34.所以:空处依次填:,.例3找出下面数列的生成规律并填空.1,2,4,8,16,□,□,128,256.解:它叫等比数列,它的后一个数是前一个数的2倍.16×2=32,32×2=64,所以空处依次填:,.例4找出下面数列的规律,并填空.1,2,4,7,11,□,□,29,37.解:这数列规律是:后一个数减前一个数的差是逐渐变大的,这些差是个自然数列:例5找出下面数列的规律,并填空:l,3,7,15,3l,□,□,255,511.解:规律是:后一个数减前一个数的差是逐渐变大的,差的变化规律是个等比数列,

4、后一个差是前一个差的2倍.另外,原数列的规律也可以这样看:后一个数等于前一个数乘以2再加l,即后一个数一前一个数×2+1.例6找出下面数列的生成规律,并填空.1,4,9,16,25,□,□,64,81,100.解:这是自然数平方数列,它的每一个数都是自然数的自乘积.如:l=1×1,4=2×2,9=3×3,16=4×4,25=5×5,,,64=8×8,81=9×9,100=10×10.若写成下面对应起来的形式,就看得更清楚.例7一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,

5、车上坐满乘客?(假定在坐满以前,无乘客下车,见表四(1))方法2:由上表可知,车上的人数是自1开始的连续自然数相加之和,到第几站后,就加到几,所以只要加到出现78时,就可知道是到多少站了.1+2+3+4+5+6+7+8+9+10+11+12=78(人)可见第12站以后,车上坐满乘客.例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17,……,73.这里3叫第一项,10叫第二项,17叫第三项,试求73是第几项?解:从第1项开始,把各项依次写出来,一直写到73出现为止(见表四(2)).可见73是第11项.例9

6、一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?解:小朋友,你是不是以为100块糖肯定能够放满这10个纸盒的了!下面让我们算一算,看你想得对不对(见表四(3))可见100块糖是远远不够的,还差1946块呢!这可能是你没有想到的吧!其实,数学中还有很多很多奇妙无比的故事呢.习题四

7、1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8,……,101.可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图4—1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图

8、4—2所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。