数学几何动点问题

数学几何动点问题

ID:28667357

大小:516.50 KB

页数:11页

时间:2018-12-12

数学几何动点问题_第1页
数学几何动点问题_第2页
数学几何动点问题_第3页
数学几何动点问题_第4页
数学几何动点问题_第5页
资源描述:

《数学几何动点问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.数学几何动点问题课程解读一、学习目标:了解几何动态问题的特点,学会分析变量与其他量之间的内在联系,探索图形运动的特点和规律,掌握动态问题的解题方法.二、考点分析:近几年在中考数学试卷中动态类题目成了压轴题中的常选内容,有点动、线动、图形运动等类型,呈现方式丰富多彩,强化各种知识的综合与联系,有较强的区分度,且所占分值较高,具有一定的挑战性.知识梳理几何动态问题是指:在图形中,当某一个元素,如点、线或图形等运动变化时,问题的结论随之改变或保持不变的几何问题.它是用运动变化的观点,创设一个由静止的定态到按某一规则运动的动态情景,通过观察、分析、

2、归纳、推理,动中窥定,变中求静,以静制动,从中探求本质、规律和方法,明确图形之间的内在联系.几何动态问题关心“不变量”,所体现的数学思想方法是数形结合思想,这里常把函数与方程、函数与不等式联系起来,实际上是一般化与特殊化的方法.当求变量之间的关系时,通常建立函数模型或不等式模型求解;当求特殊位置关系或数值时,常建立方程模型求解.必要时,多作出几个符合条件的草图也是解决问题的好办法.典型例题知识点一:动点问题例1.如图所示,在直角梯形ABCD中,CD∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s

3、的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ANMD的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是()思路分析:1)题意分析:本题涉及到的知识点主要有直角梯形、函数及其图象等.....解答过程:D解题后的思考:本题中有两个动点,在允许的范围内某一时刻四边形ANMD是固定不动的,可用含t的式子表示出面积y,再根据y与t之间的关系式确定函数图象.直线FE交AB的延长线于G.过线段FG上的一个动点H作HM⊥AG,HN⊥AD,垂足分别为M、N.设

4、HM=x,矩形AMHN的面积为y.(1)求y与x之间的函数关系式;(2)当x为何值时,矩形AMHN的面积最大,最大面积是多少?思路分析:1)题意分析:本题通过点H的运动变化,综合考查四边形、线段的比、二次函数等知识.2)解题思路:解答本题的关键是用含x的式子表示出AM,而AM=AB+BM=4+BM.BM又可看作是BG与MG的差,运用△CEF和△BEG的关系可求出BE和BG的长,运用△MHG和△BEG的关系可表示出MG.....(1)求S△ABC;(2)证明不论a取任何实数,△BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求

5、实数a的值.思路分析:1)题意分析:本题中动点P的位置没有给出来,根据点P的坐标特征,它应该在一条直线上,这条直线与y轴平行,在y轴的右侧,到y轴的距离是1.点P的位置随a的变化而在直线x=1上运动.....2)解题思路:(1)因为△ABC为等腰直角三角形,所以只要求出AB即可.又因为A、B两点是已知直线与x轴、y轴的交点,所以两点坐标可求,这样OA、OB的长可求,在Rt△OAB中,利用勾股定理可求得AB.(2)求△BOP的面积可以以OB为底,点P到y轴的距离为高.底边OB不变,高为点P的横坐标1,所以S△BOP为常数.(3)注意满足条件的点

6、P可能在第四象限,也可能在第一象限.解题后的思考:求△ABC的面积实质是求它的两条直角边长,本题的(1)和(2)问比较容易,(3)问难度稍微大一些,应注意分情况讨论.小结:解答动点问题要“以静制动”,即把动态问题变为静态问题来解.一般方法是抓住变化中的“不变量”,首先根据题意理清题目中变量的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表示出来,然后再根据题目的要求,依据几何、代数知识求解.知识点二:动线问题例4.小明在研究垂直于直径的弦的性质的过程中(如图所示,直径AB⊥弦C

7、D于E),设AE=x,BE=y,他用含x、y的式子表示图中的弦CD的长度,通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x、y的不等式,你也能发现这个不等式吗?写出你发现的不等式__________.....思路分析:1)题意分析:关于x、y的不等式是通过比较运动的弦CD和与之垂直的直径AB的大小关系得出的,解本题的关键是找出AB与CD的某种数量关系.解题后的思考:在这个问题中,弦CD是变化的,直径AB(即x+y)是不变的,弦CD无论怎样变化都不会超过直径,正是根据这一点确定了本题的不等关系式.例5.如图,已知平行四边

8、形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d.(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.(2)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。