两段变截面矩形悬挑梁挠度计算 (2)

两段变截面矩形悬挑梁挠度计算 (2)

ID:28279891

大小:171.54 KB

页数:29页

时间:2018-12-09

两段变截面矩形悬挑梁挠度计算 (2)_第1页
两段变截面矩形悬挑梁挠度计算 (2)_第2页
两段变截面矩形悬挑梁挠度计算 (2)_第3页
两段变截面矩形悬挑梁挠度计算 (2)_第4页
两段变截面矩形悬挑梁挠度计算 (2)_第5页
资源描述:

《两段变截面矩形悬挑梁挠度计算 (2)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、两段变截面矩形悬挑梁挠度计算唐大凡摘要 本文采用虚功原理推导出两段变截面矩形悬臂梁(均质弹性材料)在各种荷载作用下的挠度计算公式,供设计者参考。关键词 变截面 悬臂梁 挠度计算DeflectionCalculationofVariableCross-sectionRectangleVantileverBeamTangDafan(AnShanMetallurgicalEngineeringDesignandResearchInstitute,theMinistryofMetallurgicalIndustry)ABSTRACT The

2、formulafordeflectioncalculationofvariablecross-sectionrectanglevantileverbeamisderivedwithvirtualworktheory.Thispaperhassomereferencevaluetoengineeringdesigner.KEYWORDS Variablecross-sectionVantileverbeamDefvlectioncalculation  一、问题的引出  意大利著名结构工程师NerviP.L.在1932年为意大利佛罗伦

3、萨体育场设计的看台顶棚采用了悬挑17m的悬挑梁,其外形与弯矩的二次抛物线图形相一致,是至今最著名的大跨度变截面悬挑梁之一。在结构设计中,由于建筑功能或建筑造型的需要结构工程师需设计大跨度的悬挑梁,诸如体育场主看台雨篷梁、电视塔及高层建筑顶部承托或悬挂旋转餐厅挑出部分的大梁。为了节省材料,减轻自重及增强美感大跨度挑梁常设计成变截面梁,但设计中必须严格控制其挠度。以往计算挠度多采用“分段总和法”近似求解,该法不仅计算过程繁冗、计算量大,而且计算过程极易出错。为此,作者采用虚功原理推导出两段变截面均质弹性材料悬挑梁在各种荷载作用下的挠度计

4、算公式,所得值为弹性位移。设计中若为钢筋砼梁还须按《砼设计规范》进行刚度折减计算。图1 计算简图  二、计算公式的推导  两段变截面矩形悬挑梁如图1(a)所示,梁宽为b,其余结构尺寸及荷载见图。x轴的坐标原点取在固定端处。依据虚设单位力法先求实际荷载作用下的MP(x),再求虚设单位荷载(P=1)作用下的(x)。由于h/L值不很大,剪力对挠度的影响很小可忽略不计。以下分别导出梁在各种荷载作用下的自由端处(A点或A′点)挠度f。  1.均布荷载作用下的挠度f1  实际荷载作用下MP(x)为:  虚设单位力(P=1)作用下(x)为:  I

5、(x)的计算如下:则自由端处挠度f1为:   (1)  式(1)中第1项积分值为:   (2)式中  式(1)中第2项积分值,当η1≠η2时为   (3)式中当η1=η2时为:   (4)  2.集中荷载作用下的挠度f2  实际荷载作用下MP(x)为(见图2):虚设单位力作用下(x)为:  I(x)的计算公式同前,则自由端处挠度f2为:当L1<b0≤L时   (5)  式(5)中第1项积分值为:   (6)式中a1、a2表达式同前。  式(5)第2项积分值为:  当η1≠η2时   (7)式中a3、a4表达式同前。  当η1=η2时

6、   (8)当0≤b0≤L1   (9)式中a1、a2表达式同前。  3.在均布荷载和集中荷载共同作用下的挠度f3的计算  分别按上述1、2求出自由端处的挠度f1、Σf2。将求得的f1、Σf2叠加即为所求挠度f3:   (10)图2  图3  三、算例  某变截面悬挑梁结构尺寸及荷载如图3所示、梁宽b=0.5m,试计算自由端处挠度f3[2]。  1.用本文推导公式计算  (1)在均布荷载作用下A点的f1  由L1=7.1m,L2=1.8m,L=8.9m,q1=60kN/m,q2=80kN/m,q3=98kN/m,h=2.4m,b=0

7、.5m,η1=η2=0.5计算如下:将上述值代入式(2)及(4)得f1:  (2)在集中荷载作用下A点的f2  将b0=8.9m,P=170kN代入式(6)、(8)求其挠度f′2为:  将b0=7.1m,P=70kN代入式(9)求其挠度f″2为:所以   (3)在均布及集中荷载共同作用下A点的总挠度f3  2.用“分段总和法”计算  用“分段总和法”求其自由端处(A点)挠度f3,其结果为:。计算中将变截面梁长7.1m分成9段,计算过程略。  通过对以上2种方法的计算结果比较可见,用“分段总和法”近似求解变截面悬挑梁的挠度比本文给出的

8、公式计算值偏小。仅就本例而言,偏小15.4%。作者单位:冶金部鞍山冶金设计研究院 114002参考文献 [1]包世华,结构力学教程,高等教育出版社 [2]陈元椿,深圳体育馆结构设计,建筑结构1991.4----------------

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。