定解条件和定解问题

定解条件和定解问题

ID:28060169

大小:154.82 KB

页数:7页

时间:2018-12-07

定解条件和定解问题_第1页
定解条件和定解问题_第2页
定解条件和定解问题_第3页
定解条件和定解问题_第4页
定解条件和定解问题_第5页
资源描述:

《定解条件和定解问题》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、定解条件和定解问题含有未知函数的偏导数的方程叫偏微分方程,常微分方程可以看成是特殊的偏微分方程。方程的分数是1的称为方程式,个数多于1的叫做方程组。方程(组)中出现的未知函数的最高阶偏导数的阶数称为方程(组)的阶数。如果方程(组)中的项关于未知函数及其各阶偏导数的整体来讲是线性的,就称方程(组)为线性的,否则就称为非线性的。非线性又分为半线性、拟线性和完全非线性。一、定解条件给定一个常微分方程,有通解和特解的概念。通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态。特解除了要求满足方程还要满足给定的外加(特殊)条件。对偏微分方程也是如此,换句话说,只有偏微

2、分方程还不足以确定一个物理量随空间和时间的变化规律,因为在特定情况下这个物理量还与它的初始状态和它在边界受到的约束有关。描述初始时刻的物理状态和边界的约束情况,在数学上分别称为初始条件(或初值条件)和边界条件(或边值条件),他们统称为定解条件。初始条件:能够用来说明某一具体物理现象初始状态的条件,即描述物理过程初始状态的数学条件。边界条件:能够用来说明某一具体物理现象边界上的约束情况的条件,即描述物理过程边界状态的数学条件。定解条件:初始条件和边界条件的统称。非稳态问题:定解条件包括初始条件和边界条件。稳态问题:定解条件为边界条件。1、弦振动方程(W/Z-C^Uxx=/(

3、X,0,00)初始条件是指初始时刻G=o)弦的位移和速度。若以外V),v(x)分别表示弦上任意点的初始位移和初始速度,则初始条件为:、O,0)=(p{x\Q

4、()或g/(0,则边界条件为:-rMx(O")=go(Z)或TuX(l,X)=gl(t)当go三0或g/⑴三0时,表示弦在端点x=0或x=/处自由滑动。(3)第三类边界条件(混合边界条件或罗宾(Robin)边界条件:已知端点处弦的位移和所受的垂直于弦线的外力的和:-Tux(0,t)+々ow(O,t)=go(t),众o〉0,Tux{l,t)+kiu(l,t)=g/⑴,ki〉Q其中k娜h表示两端支承的弹性系数,当豕0⑺三0或々⑺三0时,表示弦在该端点处被固定在一个弹性支承上。2、热传导方程(Mf-fl2Dw=/(x,t),xeQ(=R/!,/>o)初始条件是指初始时刻物体内的

5、温度分布情况。T(x,y,z,O)=(p(x,y,z)式中4)(a/,z)为已知函数,表示温度在初始时刻的分边界条件是指边界上温度受周围介质的影响情况,可分为三种(1)第一类边界条件:介质表面温度已知5=()(p(p,t)式中,P为边界面上的点(2)第二类边界条件:通过介质表面单位面积的热流量己T,dTdTqtl=—K——=const,——inonon(3)第三类边界条件:边界面与周围空间的热量交换规律已知Qn=^(T-Tq)(6T为热交换系数)由热量守恒定律可知,这个热量等于单位时间内流过单位面积上的热量-K年=a(T-T0、,onardn+hT/(/V)3、位势方程(

6、泊松方程或拉普拉斯方程)对于稳态问题,变量不随时间发生变化。定解条件不含初始条件,只有边界条件。第一边值问题,狄利克莱问题(狄氏问题)(P第二边值问题,牛曼问题3(P第三边值问题(混合问题)鲁宾问题=/(/?)d(pon定解问题泊松方程表示的是电势(或电场)和电荷分布之间的关系一个方程匹配上定解条件就构成定解问题。对于定解问题,通常由于定解条件的差异有下面的三种提法:①偏微分方程(泛定方程)+初始条件+边界条件,称为初边值问题或混合问题;②偏微分方程(泛定方程)+初始条件,称为初值问题或柯西问题;③偏微分方程(泛定方程)边界条件,称为边值问题。在一个偏微分方程的定解问题中

7、,把不含未知函数及其偏导数的项,称为自由项。如果方程中的自由项为零,则称方程为齐次方程,否则就称为非齐次方程。如果边界条件中的自由项为零,则称边界条件为齐次边界条件,否则就称为非齐次边界条件。例如,对于弦振动方程,当外力等于零时,方程就变为齐次方程,此时也称它为弦的自由振动方程;当弦的两端固定时,边界条件就是齐次边界条件。三、例题1、长为7的弦,两端固定于0和7。在中点位置将弦沿着横向拉开距离/?,如图所示,然后放手任其振动,试写出初始条件。1/2解:初始时刻就是放手的那一瞬间,按题意初始速度为零,即有Mx,”h=o=02h初

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。