欢迎来到天天文库
浏览记录
ID:27929439
大小:16.45 KB
页数:4页
时间:2018-12-07
《xx届高考数学第一轮复习教案:函数——函数的最值》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。XX届高考数学第一轮复习教案:函数——函数的最值本资料为woRD文档,请点击下载地址下载全文下载地址 第18课时:第二章 函数——函数的最值 一.课题:函数的最值 二.教学目标:掌握函数最值的一般求法,并能利用函数的最值解决一些实际问题,提高分析和解决问题的能力. 三.教学重点:函数最值的一般求法以及应用. 四.教学过程: (一)主要知识: .函数最值的意义; 2.求函数最值的常用方法:(1)配方法:主要适
2、用于可化为二次函数或可化为二次函数的函数,要特别注意自变量的范围;(2)判别式法:主要适用于可化为关于的二次方程的函数.在由且,求出的值后,要检验这个最值在定义域内是否有相应的的值;(3)不等式法:利用基本不等式求最值时一定要注意应用的条件;(4)换元法:用换元法时一定要注意新变元的取值范围;(5)数形结合法:对于图形较容易画出的函数的最值问题可借助图象直观求出;(6)利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀
3、明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 (二)主要方法: .函数的最值问题实质上是函数的值域问题,因此求函数值域的方法,也是求函数的值域的方法,只是答题的方式有所差异; 2.无论用什么方法求最值,都要考查“等号”是否成立,不等式法及判别式法尤其如此. (三)例题分析: 例1.求下列函数的最大值或最小值: (1) ;(2);(3). 解:(1) ,由得, ∴
4、当时,函数取最小值,当时函数取最大值. (2)令,则,∴, 当,即时取等号,∴函数取最大值,无最小值. (3)解法(一)用判别式法: 由得, ①若,则矛盾,∴, ②由,这时,,解得:, 且当时,,∴函数的最大值是,无最小值. 解法(二)分离常数法: 由团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了
5、不少经验。 ∵,∴ ,∴函数的最大值是,无最小值. 例2.(1)函数在上的最大值与最小值的和为,则 2 . (2)对于满足的一切实数,不等式恒成立,则的取值范围为. (3)已知函数,,构造函数,定义如下:当时,,当时,,那么 ( ) 有最小值,无最大值 有最小值,无最大值 有最大值,无最小值 无最小值,也无最大值 例3.(《高考计划》考点17“智能训练第14题”)已知,若在上的最大值为,最小值为,令, (1)求的函数表达式; (2)判断函数的单调性,并求出的最小值. 答案参看教师用书. (四
6、)巩固练习: .函数的最大值为团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 6 ; 2.若,则的最大值是 6 ; 3.若则的最小值是; 4.,在和 上是单调递减函数,则的最大值为.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶
7、话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。
此文档下载收益归作者所有