新课程理念下的初中数学概念教学

新课程理念下的初中数学概念教学

ID:27895420

大小:59.00 KB

页数:4页

时间:2018-12-06

新课程理念下的初中数学概念教学_第1页
新课程理念下的初中数学概念教学_第2页
新课程理念下的初中数学概念教学_第3页
新课程理念下的初中数学概念教学_第4页
资源描述:

《新课程理念下的初中数学概念教学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、新课程理念下的初中数学概念教学(作者单位:广丙桂林市临桂区第一中学541199)摘要:木文从两个方面探讨了新课程理念下的初中数学概念教学,以期给我们的初中数学带来帮助,起到抛砖引玉之效。关键词:新课程;初中数学;概念教学数学概念是现实世界中空间形式与数量关系及木质属性在思维中的反映。数学是由概念与命题组成的知识体系。数学概念可视为思维的细胞,理解与掌握数学概念是学好数学的关键。一、数学概念的特点数学的研宄对象是现实世界的数量关系和空间形式,这种关系和形式是脱离了事物的只体物质属性的,因此数学概念有与此相对应的特点。首先,数学概念是反映一类事物在

2、数量关系和空间形式方面木质属性的思维形式,它是排除一类对象物理属性以后的抽象,反映了一类对象在数与形方面内在的、固有的属性,因而它在这一类对象的范围内具有普遍意义。其次,数学概念是人类对现实世界的空间形式和数量关系的简明、概括的反映,并且都由反映概念木质特征的符号来表示,这些符号使数学有比别的学科更加简明、清晰、正确的表述形式。再次,数学概念是具体性与抽象性的辨证统一。一些数学基木概念是一类事物在数量关系和空间形式方面木质属性的抽象,具有明显的直观意义,但通常以形式化的语言来表述;数学中有许多概念是在抽象之上的抽象,是抽概念所引出的概念;数学中

3、还有许多概念是“思维的自由想象和创造的产物”,它们与真实世界的距离是非常遥远的。但另一方面,数学概念乂是非常具体的,任何一个数学概念的背后都有许多具体内容支撑着。数学概念往往是“抽象之上的抽象”,先前的概念往往是后续概念的基础,从而形成了数学概念的系统。数学概念的这种特性要求学生在数学学习时必须做到循序渐进、一步一个脚印、扎扎实实地打好基础。二、新课程理念下的数学概念教学《数学课程标准》强调:“抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。”1.重视概念的实际背景与形成过程(1)重视概念的实际背景,联系

4、现实原型建立概念恩格斯指出:“数和形的概念不是从其他任何地方,而是从现实世界中得来的。”离开了从现实世界得来的感觉和经验,数学概念就成了无源之水和无本之木。从这个意义上讲,形成概念的首要条件,是使学生获得十分丰富和切合实际的感觉材料。因此,要密切联系数学概念的现实原型,引导学生分析观察,在感性认知的基础上建立概念。(2)重视让学生利用已奋认知结构中的旮关知识来理解新概念恰当的联系数学概念的原型,可以丰富学生的感性认知,奋利于理解概念的内容,体会学习的0的和意义,激发学习的主动性。根据皮亚杰的认知发展理论,学生在遇到新概念吋,总是先用已有认知结构

5、去同化,如果获得成功,就得到暂吋的平衡;如果同化不成功,则会调节已奋认知结构或重新建立新的认知结构,以顺应新概念,从而达到新的平衡。(3)重视让学生经历概念形成的全过程要让学生进行充分的自主活动,使他们有机会经历概念产生的过程,完成概念形成的每一个步骤。①辨别事物的外部特征。结合学生自己在日常生活中的经验或事实,或教师提供的有代表性典型事例,通过比较,分析、辨认,根据事物的外部特征进行概括,此吋教师应注意提供的素材应是不同形式的正面的例子,数量恰当,便于学生分析比较,同吋也应关注材料的趣味性,使学生积极主动地投入学习。②分化出各种事物的本质属性

6、。这一阶段要让学生深入进行观察,积极展开思维活动,培养学生思维的广阔性。①概括出各个事物的共同属性,并提出它们的共同关键属性的假设。要注意对各种属性进行比较,培养学生从平常的现象中发现不平常的性质,从貌似无关的事物中发现相似点或因果关系的能力。②在特定的情境中检验假设,确认关键属性,检验过程中,采用变式是一种有效手段。③概括、形成概念。验证了假设以后,把关键属性抽象出来,并区分出冇从属关系的关键属性,使新概念与认知结构中的已有关观念分化,有语言概括成为概念的定义。④把新概念的共同关键属性推广到同类事物中去。这既是在更人范围内检验和修正概念定义的

7、过程,又是一个概念应用的过程,从中我们可以看出概念的本质特征是否己经被真正理解。因此在这个过程中,教师可以用一些概念的等价语言来让学生进行判断和推理。⑤用符号表示新概念,通过概念形成的上述步骤,学生比较全面地了解了概念的内涵,而且还掌握了许多概念的具体例证,对于概念的各种变式也有了较好的理解。总之,学生对概念的内涵和外延都冇了比较准确、全面的理解,这时,就应该及吋地引进数学符号,引进数学符号以后,应当引导学生把符号与它所代表的实质内容联系起来,使学生在看到符号吋就能够联想起符号所代表的概念及其本质特征。1.在概念的数学中要重视基本思想方法的渗透

8、。(1)用比较的方法辩析概念的内涵如在“分式”教学吋,列举出有关代数式后,引导学生把它们与学:>」过的“整式”进行比较,归纳出“分式”的概念,加深了学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。